910 resultados para Device architectures
Resumo:
Patients with hydrocephalus and risk factors for overdrainage may be submitted to ventricular shunt (VS) implant with antisiphon device. The objective of this study was to prospectively evaluate for two years the clinical and tomographic results of the implant of fixed-pressure valves with antisiphon device SPHERA (R) in 35 adult patients, with hydrocephalus and risk factors for overdrainage. Of these, 3 had congenital hydrocephalus in adult patients with very dilated ventricles (Evans index >50%), 3 had symptomatic overdrainage after previous VS implant (subdural hematoma, hygroma or slit ventricle syndrome), 1 had previous chronic subdural hematoma, 15 had normal pressure hydrocephalus with final lumbar pressure <5 cm H2O after tap test (40 mL), 6 had pseudotumor cerebri, and 7 had hydrocephalus due to other causes. Clinical improvement was observed and sustained in 94.3% of the patients during the two-year period with no computed tomography (CT) evidence of hypo or overdrainage, and no immediate early or late significant complications.
Resumo:
Abstract Background High astigmatisms are usually induced during corneal suturing subsequent to tissue transplantation or any other surgery which involves corneal suturing. One of the reasons is that the procedure is intimately dependent on the surgeon's skill for suturing identical stitches. In order to evaluate the influence of the irregularity on suturing for the residual astigmatism, a prototype for ophthalmic surgical support has been developed. The final intention of this prototype is to be an evaluation tool for guided suture and as an outcome diminish the postoperative astigmatism. Methods The system consists of hand held ring with 36 infrared LEDs, that is to be projected onto the lachrymal film of the cornea. The image is reflected back through the optics of the ocular microscope and its distortion from the original circular shape is evaluated by developed software. It provides keratometric and circularity measurements during surgery in order to guide the surgeon for uniformity in suturing. Results The system is able to provide up to 23D of astigmatism (32D - 55D range) and is ± 0.25D accurate. It has been tested in 14 volunteer patients intraoperative and has been compared to a commercial keratometer Nidek Oculus Hand-held corneal topographer. The correlation factors are 0.92 for the astigmatism and 0.97 for the associated axis. Conclusion The system is potentially efficient for guiding the surgeon on uniformity of suturing, presenting preliminary data indicating an important decrease on the residual astigmatism, from an average of 8D - for patients not submitted to the prototype guidance - to 1.4D - for patients who have actually been submitted to the prototype guidance - after the first 24 hours post-surgery and in the subsequent weeks. It also indicates that the surgeon should achieve circularity greater or equal to 98% in order to avoid postoperative astigmatisms over 1D. Trial Registration Trial registration number: CAAE - 0212.0.004.000-09.
Resumo:
Patients with hydrocephalus and risk factors for overdrainage may be submitted to ventricular shunt (VS) implant with antisiphon device. The objective of this study was to prospectively evaluate for two years the clinical and tomographic results of the implant of fixed-pressure valves with antisiphon device SPHERA® in 35 adult patients, with hydrocephalus and risk factors for overdrainage. Of these, 3 had congenital hydrocephalus in adult patients with very dilated ventricles (Evans index >50%), 3 had symptomatic overdrainage after previous VS implant (subdural hematoma, hygroma or slit ventricle syndrome), 1 had previous chronic subdural hematoma, 15 had normal pressure hydrocephalus with final lumbar pressure <5 cm H2O after tap test (40 mL), 6 had pseudotumor cerebri, and 7 had hydrocephalus due to other causes. Clinical improvement was observed and sustained in 94.3% of the patients during the two-year period with no computed tomography (CT) evidence of hypo or overdrainage, and no immediate early or late significant complications.
Resumo:
OBJETIVO: Avaliar os limiares de percepção da pressão em polpas de dois dedos (indicador e mínimo), em uma população brasileira, sem lesão nervosa ou neuropatia. MÉTODOS: Usamos Pressure-Specified Sensory Device, um equipamento computadorizado para obter limiares de percepção da pressão normal, tanto estáticos quanto dinâmicos, e discriminação de dois pontos. RESULTADOS: Testamos a sensibilidade nos dedos, em 30 voluntários. Os testes de significância foram realizados utilizando o teste t de Student. Os valores médios (g/mm²) para os limiares de pressão estática de um e dois pontos (s1PD, s2PD) e discriminação dinâmica de um e dois pontos (m1PD, m2PD) no dedo indicador dominante foram: s1PD = 0,4, m1PD = 0,4, s2PD = 0,48, m2PD = 0,51. CONCLUSÃO: Não há diferença significativa na sensibilidade entre as mãos dominante e não dominante.
Resumo:
The use of piezoelectric materials for the development of electromechanical devices for the harvesting or scavenging of ambient vibrations has been extensively studied over the last decade. The energy conversion from mechanical (vibratory) to electrical energy is provided by the electromechanical coupling between mechanical strains/stresses and electric charges/voltages in the piezoelectric material. The majority of the studies found in the open literature present a tip-mass cantilever piezoelectric device tuned on the operating frequency. Although recent results show that these devices can be quite effective for harvesting small amounts of electrical energy, little has been published on the robustness of these devices or on the effect of parametric uncertainties on the energy harvested. This work focuses on a cantilever plate with bonded piezoelectric patches and a tip-mass serving as an energy harvesting device. The rectifier and storage electric circuit was replaced by a resistive circuit (R). In addition, an alternative to improve the harvesting performance by adding an inductance in series to the harvesting circuit, thus leading to a resonant circuit (RL), is considered. A coupled finite element model leading to mechanical (displacements) and electrical (charges at electrodes) degrees of freedom is considered. An analysis of the effect of parametric uncertainties of the device on the electric output is performed. Piezoelectric and dielectric constants of the piezoelectric active layers and electric circuit equivalent inductance are considered as stochastic parameters. Mean and confidence intervals of the electric output are evaluated.
Resumo:
INTRODUCTION: Among the sleep disorders reported by the American Academy of Sleep, the most common is obstructive sleep apnea-hypopnea syndrome (OSAHS), which is caused by difficulties in air passage and complete interruption of air flow in the airway. This syndrome is associated with increased morbidity and mortality in apneic individuals. OBJECTIVE: It was the objective of this paper to evaluate a removable mandibular advancement device as it provides a noninvasive, straightforward treatment readily accepted by patients. METHODS: In this study, 15 patients without temporomandibular disorders (TMD) and with excessive daytime sleepiness or snoring were evaluated. Data were collected by means of: Polysomnography before and after placement of an intraoral appliance, analysis of TMD signs and symptoms using a patient history questionnaire, muscle and TMJ palpation. RESULTS: After treatment, the statistical analysis (t-test, and the "before and after" test) showed a mean reduction of 77.6% (p=0.001) in the apnea-hypopnea index, an increase in lowest oxyhemoglobin saturation (p=0.05), decrease in desaturation (p=0.05), decrease in micro-awakenings or EEG arousals (p=0.05) and highly significant improvement in daytime sleepiness (p=0.005), measured by the Epworth Sleepiness Scale. No TMD appeared during the monitoring period. CONCLUSION: The oral device developed in this study was considered effective for mild to moderate OSAHS.
Resumo:
Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.
Resumo:
This work proposes a system for classification of industrial steel pieces by means of magnetic nondestructive device. The proposed classification system presents two main stages, online system stage and off-line system stage. In online stage, the system classifies inputs and saves misclassification information in order to perform posterior analyses. In the off-line optimization stage, the topology of a Probabilistic Neural Network is optimized by a Feature Selection algorithm combined with the Probabilistic Neural Network to increase the classification rate. The proposed Feature Selection algorithm searches for the signal spectrogram by combining three basic elements: a Sequential Forward Selection algorithm, a Feature Cluster Grow algorithm with classification rate gradient analysis and a Sequential Backward Selection. Also, a trash-data recycling algorithm is proposed to obtain the optimal feedback samples selected from the misclassified ones.
Resumo:
Programa de Doctorado: Ingeniería de Telecomunicación Avanzada.
Resumo:
Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.