968 resultados para Developmentally Important Genes
Resumo:
Foram analisadas a freqüência e distribuição de mutações nos genes dihidrofolato redutase e dihidropteroato sintetase do Plasmodium falciparum, usando a metodologia de reação em cadeia da polimerase e polimorfismos de hidrólise por enzimas de restrição, em amostras de sangue infectado proveniente de crianças moçambicanas, residentes em Maputo. A análise foi feita antes e 7 dias após o tratamento com sulfadoxina-pirimetamina (S/P). Os resultados mostraram a ocorrência de mutações pontuais nos genes estudados e a presença de combinações de três alelos em dhfr (51Ile, 59Arg e 108Asn) e do quintúplo mutante (dhfr 51Ile, 59Arg, 108Asn e dhps 437Gly, 540Glu), ambas situações associadas à falha terapêutica no sétimo dia após tratamento com S/P. Esses achados mostram a importância de se estudar a resistência à S/P em Moçambique, e como os marcadores moleculares de resistência aos antimaláricos podem fornecer dados importantes para a política nacional de controlo da malária.
Resumo:
Part of the results of this thesis was presented in the following meetings: Susana Ponte, Lara Carvalho, Inês Cristo and António Jacinto. The role of Grainy head in epithelial tissue growth. Drostuga 2013. Faro, Portugal, January 3rd 2014 [poster] Susana Ponte, Lara Carvalho, Inês Cristo and António Jacinto. The role of Grainy head in epithelial tissue growth. Drostuga 2014. Tomar, Portugal, September 5th-6th 2014 [poster]
Resumo:
O cancro do cólon e reto familiar do tipo X (FCCTX) é um síndrome que define as famílias que preenchem os critérios de Amesterdão, mas cujos tumores não apresentam instabilidade de microssatélites e também nas quais não é identificada mutação germinal nos genes de reparação de erros de DNA do tipo mismatch (MMR). A sua causa molecular permanece desconhecida. O presente trabalho teve como objetivo avaliar o envolvimento de genes localizados numa região de suscetibilidade previamente identificada para o FCCTX (13q32-33), assim como de mutações identificadas previamente numa família FCCTX, através da análise do exoma por sequenciação de nova geração (NGS). Pretendeuse ainda melhorar a caracterização molecular de tumores FCCTX. Foi efetuada análise de mutações germinais nos genes KDELC1 e ERCC5 em 15 indivíduos índex de famílias FCCTX e 2 familiares de uma dessas famílias. No caso do gene TPP2, foi avaliado o envolvimento de um transcrito expresso alternativamente, previamente identificado, através de análise mutacional e da quantificação da expressão diferencial dos transcritos por real-time PCR. Foi ainda efetuada a análise de segregação com a doença na família, de 5 mutações em genes distintos, selecionadas a partir dos resultados da análise do exoma. Foi efetuada a análise de alterações de copy-number e de metilação nos genes MMR, MGMT e APC em 22 tumores FCCTX por MS-MLPA. Não foram identificadas mutações potencialmente patogénicas nos genes KDELC1 e ERCC5. No entanto, foram identificadas 2 mutações, uma no ERCC5 (c.2636 A>G) e outra no KDELC1 (c.455A>T) em relação às quais não se pode excluir a sua patogenicidade. Não foi detetada qualquer mutação no TPP2 associada à expressão diferencial dos transcritos, no entanto verificou-se que a expressão difere entre tecidos (sangue e cólon). A análise de segregação das mutações selecionadas a partir da análise do exoma, revelou que apenas para um dos genes a alteração poderá ser patogénica. Foram identificados ganhos frequentes, assim como metilação, nos genes MMR e MGMT, nos tumores FCCTX, sendo significativamente mais frequentes num subgrupo destes tumores que apresenta perdas em genes supressores de tumor (TSG+), em relação ao grupo que não apresenta estas alterações. A metilação no APC também apresentou padrões distintos entre os dois subgrupos de tumores FCCTX. Em conclusão, as variantes observadas nos genes KDELC1, ERCC5 e TPP2, assim como a alteração identificada no âmbito da análise do exoma não devem ser excluídas, podendo ser possível a sua contribuição para a suscetibilidade para o FCCTX. O padrão de alterações de copy-number e de metilação nos tumores FCCTX reforça a existência de pelo menos duas entidades moleculares distintas no FCCTX e sugere mecanismos de tumorigénese específicos para a iniciação tumoral neste síndrome.
Resumo:
Grapevine (Vitis vinifera) is one of most agro-economically important fruit crops worldwide, with a special relevance in Portugal where over 300 varieties are used for wine production. Due to global warming, temperature stress is currently a serious issue affecting crop production especially in temperate climates. Mobile genetic elements such as retrotransposons have been shown to be involved in environmental stress induced genetic and epigenetic modifications. In this study, sequences related to Grapevine Retrotransposon 1 (Gret1) were utilized to determine heat induced genomic and transcriptomic modifications in Touriga Nacional, a traditional Portuguese grapevine variety. For this purpose, growing canes were treated to 42 oC for four hours and leaf genomic DNA and RNA was utilized for various techniques to observe possible genomic alterations and variation in transcription levels of coding and non-coding sequences between non-treated plants and treated plants immediately after heat stress (HS-0 h) or after a 24 hour recovery period (HS-24 h). Heat stress was found to induce a significant decrease in Gret1 related sequences in HS-24 h leaves, indicating an effect of heat stress on genomic structure. In order to identify putative heat induced DNA modifications, genome wide approaches such as Amplified Fragment Length Polymorphism were utilized. This resulted in the identification of a polymorphic DNA fragment in HS-0 h and HS-24 h leaves whose sequence mapped to a genomic region flanking a house keeping gene (NADH) that is represented in multiple copies in the Vitis vinifera genome. Heat stress was also found to affect the transcript levels of various non-coding and gene coding sequences. Accordingly, quantitative real time PCR results established that Gret1 related sequences are up regulated immediately after heat stress whereas the level of transcript of genes involved in identification and repair of double strand breaks are significantly down regulated in HS-0 h plants. Taken together, the results of this work demonstrated heat stress affects both genomic integrity and transcription levels.
Resumo:
INTRODUCTION: In the past two decades members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. This study prospectively analyzed the distribution of species and trends in antimicrobial resistance among clinical isolates of enterococci in a Brazilian tertiary hospital from 2006-2009. METHODS: Enterococcal species were identified by conventional biochemical tests. The antimicrobial susceptibility profile was performed by disk diffusion in accordance with the Clinical and Laboratory Standards Institute (CLSI). A screening test for vancomycin was also performed. Minimal inhibitory concentration (MIC) for vancomycin was determined using the broth dilution method. Molecular assays were used to confirm speciation and genotype of vancomycin-resistant enterococci (VRE). RESULTS: A total of 324 non-repetitive enterococcal isolates were recovered, of which 87% were E. faecalis and 10.8% E. faecium. The incidence of E. faecium per 1,000 admissions increased significantly (p < 0.001) from 0.3 in 2006 to 2.3 in 2009. The VRE rate also increased over time from 2.5% to 15.5% (p < 0.001). All VRE expressed high-level resistance to vancomycin (MIC >256µg/ mL) and harbored vanA genes. The majority (89.5%) of VRE belonged to E. faecium species, which were characteristically resistant to ampicillin and quinolones. Overall, ampicillin resistance rate increased significantly from 2.5% to 21.4% from 2006-2009. Resistance rates for gentamicin, chloramphenicol, tetracycline, and erythromycin significantly decreased over time, although they remained high. Quinolones resistance rates were high and did not change significantly over time. CONCLUSIONS: The data obtained show a significant increasing trend in the incidence of E. faecium resistant to ampicillin and vancomycin.
Resumo:
RESUMO: A reprogramação celular permite que uma célula somática seja reprogramada para outra célula diferente através da expressão forçada de factores de transcrição (FTs) específicos de determinada linhagem celular, e constitui uma área de investigação emergente nos últimos anos. As células somáticas podem ser experimentalmente manipuladas de modo a obter células estaminais pluripotentes induzidas (CEPi), ou convertidas directamente noutro tipo de célula somática. Estas descobertas inovadoras oferecem oportunidades promissoras para o desenvolvimento de novas terapias de substituição celular e modelos de doença, funcionando também como ferramentas valiosas para o estudo dos mecanismos moleculares que estabelecem a identidade celular e regulam os processos de desenvolvimento. Existem várias doenças degenerativas hereditárias e adquiridas da retina que causam deficiência visual devido a uma disfunção no tecido de suporte da retina, o epitélio pigmentar da retina (EPR). Uma destas doenças é a Coroideremia (CHM), uma doença hereditária monogénica ligada ao cromossoma X causada por mutações que implicam a perda de função duma proteína com funções importantes na regulação do tráfico intracelular. A CHM é caracterizada pela degenerescência progressiva do EPR, assim como dos foto-receptores e da coróide. Resultados experimentais sugerem que o EPR desempenha um papel importante na patogénese da CHM, o que parece indicar uma possível vantagem terapêutica na substituição do EPR nos doentes com CHM. Por outro lado, existe uma lacuna em termos de modelos in vitro de EPR para estudar a CHM, o que pode explicar o ainda desconhecimento dos mecanismos moleculares que explicam a patogénese desta doença. Assim, este trabalho focou-se principalmente na exploração das potencialidades das técnicas de reprogramação celular no contexto das doenças de degenerescência da retina, em particular no caso da CHM. Células de murganho de estirpe selvagem, bem como células derivadas de um ratinho modelo de knockout condicional de Chm, foram convertidos com sucesso em CEPi recorrendo a um sistema lentiviral induzido que permite a expressão forçada dos 4 factores clássicos de reprogramação, a saber Oct4, Sox2, Klf4 e c-Myc. Estas células mostraram ter equivalência morfológica, molecular e funcional a células estaminais embrionárias (CES). As CEPi obtidas foram seguidamente submetidas a protocolos de diferenciação com o objectivo final de obter células do EPR. Os resultados promissores obtidos revelam a possibilidade de gerar um valioso modelo de EPR-CHM para estudos in vitro. Em alternativa, a conversão directa de linhagens partindo de fibroblastos para obter células do EPR foi também abordada. Uma vasta gama de ferramentas moleculares foi gerada de modo a implementar uma estratégia mediada por FTs-chave, seleccionados devido ao seu papel fundamental no desenvolvimento embrionário e especificação do EPR. Conjuntos de 10 ou menos FTs foram usados para transduzir fibroblastos, que adquiriram morfologia pigmentada e expressão de alguns marcadores específicos do EPR. Adicionalmente, observou-se a activação de regiões promotoras de genes específicos de EPR, indicando que a identidade transcricional das células foi alterada no sentido pretendido. Em conclusão, avanços significativos foram atingidos no sentido da implementação de tecnologias de reprogramação celular já estabelecidas, bem como na concepção de novas estratégias inovadoras. Metodologias de reprogramação, quer para pluripotência, quer via conversão directa, foram aplicadas com o objectivo final de gerar células do EPR. O trabalho aqui descrito abre novos caminhos para o estabelecimento de terapias de substituição celular e, de uma maneira mais directa, levanta a possibilidade de modelar doenças degenerativas da retina com disfunção do EPR numa placa de petri, em particular no caso da CHM.---------------ABSTRACT: Cellular reprogramming is an emerging research field in which a somatic cell is reprogrammed into a different cell type by forcing the expression of lineage-specific transcription factors (TFs). Cellular identities can be manipulated using experimental techniques with the attainment of pluripotency properties and the generation of induced Pluripotent Stem (iPS) cells, or the direct conversion of one somatic cell into another somatic cell type. These pioneering discoveries offer new unprecedented opportunities for the establishment of novel cell-based therapies and disease models, as well as serving as valuable tools for the study of molecular mechanisms governing cell fate establishment and developmental processes. Several retinal degenerative disorders, inherited and acquired, lead to visual impairment due to an underlying dysfunction of the support cells of the retina, the retinal pigment epithelium (RPE). Choroideremia (CHM), an X-linked monogenic disease caused by a loss of function mutation in a key regulator of intracellular trafficking, is characterized by a progressive degeneration of the RPE and other components of the retina, such as the photoreceptors and the choroid. Evidence suggest that RPE plays an important role in CHM pathogenesis, thus implying that regenerative approaches aiming at rescuing RPE function may be of great benefit for CHM patients. Additionally, lack of appropriate in vitro models has contributed to the still poorly-characterized molecular events in the base of CHM degenerative process. Therefore, the main focus of this work was to explore the potential applications of cellular reprogramming technology in the context of RPE-related retinal degenerations. The generation of mouse iPS cells was established and optimized using an inducible lentiviral system to force the expression of the classic set of TFs, namely Oct4, Sox2, Klf4 and c-Myc. Wild-type cells, as well as cells derived from a conditional knockout (KO) mouse model of Chm, were successfully converted into a pluripotent state, that displayed morphology, molecular and functional equivalence to Embryonic Stem (ES) cells. Generated iPS cells were then subjected to differentiation protocols towards the attainment of a RPE cell fate, with promising results highlighting the possibility of generating a valuable Chm-RPE in vitro model. In alternative, direct lineage conversion of fibroblasts into RPE-like cells was also tackled. A TF-mediated approach was implemented after the generation of a panoply of molecular tools needed for such studies. After transduction with pools of 10 or less TFs, selected for their key role on RPE developmental process and specification, fibroblasts acquired a pigmented morphology and expression of some RPE-specific markers. Additionally, promoter regions of RPE-specific genes were activated indicating that the transcriptional identity of the cells was being altered into the pursued cell fate. In conclusion, highly significant progress was made towards the implementation of already established cellular reprogramming technologies, as well as the designing of new innovative ones. Reprogramming into pluripotency and lineage conversion methodologies were applied to ultimately generate RPE cells. These studies open new avenues for the establishment of cell replacement therapies and, more straightforwardly,raise the possibility of modelling retinal degenerations with underlying RPE defects in apetri dish, particularly CHM.
Resumo:
INTRODUCTION: Extended spectrum β-lactamases (ESBLs) are enzymes that degrade β-lactam antibiotics and have been reported to be an important cause of nosocomial infection in worldwide. METHODS: During 2009, 659 enterobacteria strains were isolated from different clinical specimens and tested for ESBL production. The disk approximation test, combined disk method and addition of clavulanic acid were used for phenotypic detection of the ESBL-producing strains and PCR for detection of the blaTEM and blaCTX-M genes. RESULTS: Among the isolates, 125 were ESBL producers. The blaCTX-M and blaTEM genes were detected in 90.4% and 75% of the strains, respectively. Most strains were isolated from urine. Klebsiella pneumoniae was the most prevalent organism. Microorganisms presented high resistance to the antibiotics. CONCLUSIONS: These results support the need for extending ESBL detection methods to different pathogens of the Enterobacteriaceae family because these methods are only currently standardized by the CLSI for Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and Proteus mirabilis. Carbapenems were the antibiotic class of choice for the treatment of infections caused by ESBL-producing Enterobacteriaceae.
Resumo:
INTRODUCTION: The prevalence of cephalosporins and carbapenem-resistant Klebsiella pneumoniae strains is rising in Brazil, with potential serious consequences in terms of patients' outcomes and general care. METHODS: This study characterized 24 clinical isolates of K. pneumoniae from two hospitals in Recife, Brazil, through the antimicrobial susceptibility profile, analyses of β-lactamase genes (blaTEM, blaSHV,blaCTX-MblaKPC, blaVIM, blaIMP, and blaSPM), plasmidial profile and ERIC-PCR (Enterobacterial repetitive intergenic consensus-polymerase chain reaction). RESULTS: ERIC-PCR and plasmidial analysis grouped the isolates in 17 and 19 patterns, respectively. Six isolates from one hospital presented the same pattern by ERIC-PCR, indicating clonal dissemination. All isolates presented blaSHV, 62.5% presented blaCTX-M-2, 29% blaTEM, and 41.7% blaKPC. Metallo-β-lactamase genes blaand blawere not detected. Eleven isolates were identified carrying at least 3 β-lactamase studied genes, and 2 isolates carried blaSHVblaTEM, blaCTX-M-2 and blaKPC simultaneously. CONCLUSIONS: The accumulation of resistance genes in some strains, observed in this study, imposes limitations in the therapeutic options available for the treatment of infections caused by K. pneumoniae in Recife, Brazil. These results should alert the Brazilian medical authorities to establish rigorous methods for more efficiently control the dissemination of antimicrobial resistance genes in the hospital environment.
Resumo:
INTRODUCTION: Staphylococcal species are pathogens that are responsible for outbreaks of foodborne diseases. The aim of this study was to investigate the prevalence of enterotoxin-genes and the antimicrobial resistance profile in staphylococcus coagulase-negative (CoNS) and coagulasepositive (CoPS) isolates from black pudding in southern Brazil. METHODS: Two hundred typical and atypical colonies from Baird-Parker agar were inoculated on mannitol salt agar. Eighty-two mannitol-positive staphylococci were submitted to conventional biochemical tests and antimicrobial susceptibility profiling. The presence of coagulase (coa) and enterotoxin (se) genes was investigated by polymerase chain reaction. RESULTS: The isolates were divided into 2 groups: 75.6% (62/82) were CoNS and 24.4% (20/82) were CoPS. The biochemical tests identified 9 species, of which Staphylococcus saprophyticus (37.8%) and Staphylococcus carnosus (15.9%) were the most prevalent. Antimicrobial susceptibility tests showed resistance phenotypes to antibiotics widely administered in humans, such as gentamicin, tetracycline, chloramphenicol, and erythromycin. The coa gene was detected in 19.5% (16/82) of the strains and 4 polymorphic DNA fragments were observed. Five CoNS isolates carrying the coa gene were submitted for 16S rRNA sequencing and 3 showed similarity with CoNS. Forty strains were positive for at least 1 enterotoxin-encoding gene, the genes most frequently detected were sea (28.6%) and seb (27.5%). CONCLUSIONS: The presence of antimicrobial resistant and enterotoxin-encoding genes in staphylococci isolates from black pudding indicated that this fermented food may represent a potential health risk, since staphylococci present in food could cause foodborne diseases or be a possible route for the transfer of antimicrobial resistance to humans.
Resumo:
Introduction There are few studies reporting the antifungal activities of Lippia alba extracts. Methods A broth microdilution assay was used to evaluate the antifungal effects of Lippia alba extracts against seven yeast species of Candida and Cryptococcus. The butanol fraction was investigated by gas chromatography-mass spectrometry. Results The butanol fraction showed the highest activity against Candida glabrata. The fraction also acted synergistically with itraconazole and fluconazole against C. glabrata. The dominant compounds in the butanol fraction were 2,2,5-trimethyl-3,4-hexanedione, 3,5-dimethyl-4-octanone and hexadecane. Conclusions The butanol fraction may be a good candidate in the search for new drugs from natural products with antifungal activity.
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.
Resumo:
IntroductionKala-azar is a disease resulting from infection by Leishmania donovani and Leishmania infantum. Most patients with the disease exhibit prolonged fever, wasting, anemia and hepatosplenomegaly without complications. However, some patients develop severe disease with hemorrhagic manifestations, bacterial infections, jaundice, and edema dyspnea, among other symptoms, followed by death. Among the parasite molecules that might influence the disease severity are the macrophage migration inhibitory factor-like proteins (MIF1 and MIF2) and N-acetylglucosamine-1-phosphotransferase (NAGT), which act in the first step of protein N-glycosylation. This study aimed to determine whether MIF1, MIF2 and NAGT are virulence factors for severe kala-azar.MethodsTo determine the parasite genotype in kala-azar patients from Northeastern Brazil, we sequenced the NAGT genes of L. infantum from 68 patients as well as the MIF1 and MIF2 genes from 76 different subjects with diverse clinical manifestations. After polymerase chain reaction (PCR), the fragments were sequenced, followed by polymorphism identification.ResultsThe nucleotide sequencing of the 144 amplicons revealed the absence of genetic variability of the NAGT, MIF1 and MIF2 genes between the isolates. The conservation of these genes suggests that the clinical variability of kala-azar does not depend upon these genes. Additionally, this conservation suggests that these genes may be critical for parasite survival.ConclusionsNAGT, MIF1 and MIF2 do not alter the severity of kala-azar. NAGT, MIF1 and MIF2 are highly conserved among different isolates of identical species and exhibit potential for use in phylogenetic inferences or molecular diagnosis.
Resumo:
ABSTRACTINTRODUCTION:Exposure to subinhibitory concentrations (SICs) of antimicrobials may alter the bacterial transcriptome.METHODS: Here, we evaluated the expression of nine virulence-related genes in vancomycin-resistant enterococci (VRE) urinary tract infection isolates grown at SICs of vancomycin.RESULTS:A Subinhibitory concentrations of vancomycin interferes with gene modulation, but does not affect the phenotype of a VRE strain in vitro .CONCLUSIONS:Subinhibitory concentrations of vancomycin may regulate the expression of virulence factors in vivo or contribute to the selection of vancomycin-resistant strains.
Resumo:
Abstract: INTRODUCTION: Carbapenems are the therapy of choice for treating severe infections caused by the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. We aimed to assess the prevalence and antimicrobial susceptibility profiles of producers of distinct oxacillinases among nosocomial isolates of the A. calcoaceticus-A. baumannii complex in a 249-bed general hospital located in Joinville, Southern Brazil. METHODS: Of the 139 A. baumannii clinical isolates with reduced susceptibility to carbapenems between 2010 and 2013, 118 isolates from varying anatomical sites and hospital sectors were selected for genotypic analysis. Five families of genes encoding oxacillinases, namely blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like, and blaOXA-143-like, wereinvestigated by multiplex polymerase chain reaction (PCR). RESULTS: Most (87.3%) isolates simultaneously carried the blaOXA-23-likeand blaOXA-51-likegenes, whereas three (2.5%) isolates harbored only blaOXA-51-likeones. The circulation of carbapenem-resistant isolates increased during the study period: from none in 2010, to 22 in 2011, 64 in 2012, and 53 in 2013. CONCLUSIONS: Isolates carrying the blaOXA-23-likeand blaOXA-51-likegenes were widely distributed in the hospital investigated. Because of the worsening scenario, the implementation of preventive measures and effective barriers is needed.