962 resultados para Density functional theory calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protonation effect on the vibrational and electronic spectra of 4-aminoazobenzene and 4-(dimethylamino)azobenzene was investigated by resonance Raman spectroscopy, and the results were discussed on the basis of quantum-chemical calculations. Although this class of molecular systems has been investigated in the past concerning the azo-hydrazone tautomerism, the present work is the first to use CASSCF/CASPT2 calculations to unveil the structure of both tautomers as well the nature of the molecular orbitals involved in chromophoric moieties responsible for the resonance Raman enhancement patterns. More specifically both the resonance Raman and theoretical results show clearly that in the neutral species, the charge transfer transition involves mainly the azo moiety, whereas in the protonated forms there is a great difference, depending on the tautomer. In fact, for the azo tautomer the transition is similar to that observed in the corresponding neutral species, whereas in the hydrazone tautomer such a transition is much more delocalized due to the contribution of the quinoid structure. The characterization of protonated species and the understanding of the tautomerization mechanism are crucial for controlling molecular properties depending on the polarity and pH of the medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate electron density and linear optical properties of L-histidinium hydrogen oxalate are discussed. Two high-resolution single crystal X-ray diffraction experiments were performed and compared with density functional calculations in the solid state as well as in the gas phase. The crystal packing and the hydrogen bond network are accurately investigated using topological analysis based on quantum theory of atoms in molecules, Hirshfeld surface analysis, and electrostatic potential mapping. The refractive indices are computed from couple perturbed Kohn-Sham calculations and measured experimentally. Moreover, distributed atomic polarizabilities are used to analyze the origin of the linear susceptibility in the crystal, in order to separate molecular and intermolecular causes. The optical properties are also correlated with the electron density distribution. This compound also offers the possibility to test the electron density building block approach for material science and different refinement schemes for accurate positions and displacement parameters of hydrogen atoms, in the absence of neutron diffraction data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate, via numerical simulations, mean field, and density functional theories, the magnetic response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong association. The proposed parameter-free theory is able to capture both the density and temperature dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic susceptibility, arising from the competition between magnetically inert particle rings and magnetically active chains. Monte Carlo simulation results closely agree with the theoretical findings. DOI: 10.1103/PhysRevLett.110.148306

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new complex, [Zr(pda)2]n (1, pda2- = N,N'-bis(neo-pentyl)-ortho-phenylenediamide, n = 1 or 2), prepared by the reaction of 2 equiv of pdaLi2 with ZrCl4, reacts rapidly with halogen oxidants to afford the new product ZrX2(disq)2 (3, X = Cl, Br, I; disq- = N,N'-bis(neo-pentyl)-ortho-diiminosemiquinonate) in which each redox-active ligand has been oxidized by one electron. The oxidation products 3a-c have been structurally characterized and display an unusual parallel stacked arrangement of the disq- ligands in the solid state, with a separation of approximately 3 A. Density functional calculations show a bonding-type interaction between the SOMOs of the disq- ligands to form a unique HOMO while the antibonding linear combination forms a unique LUMO. This orbital configuration leads to a closed-shell-singlet ground-state electron configuration (S = 0). Temperature-dependent magnetism measurements indicate a low-lying triplet excited state at approximately 750 cm-1. In solution, 3a-c show strong disq--based absorption bands that are invariant across the halide series. Taken together these spectroscopic measurements provide experimental values for the one- and two-electron energies that characterize the pi-stacked bonding interaction between the two disq- ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a finite-range density functional, we have investigated the energetics and structural features of mixed helium clusters. The possibility of doping the cluster with a molecule of sulfur hexafluoride is also considered. It is seen that the repulsion introduced by the impurity strongly modifies the properties of the smallest drops. Although only a qualitative comparison is possible, the gross features displayed by our calculations are in agreement with recent experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a finite-range density functional, we have investigated the energetics and structural features of mixed helium clusters. The possibility of doping the cluster with a molecule of sulfur hexafluoride is also considered. It is seen that the repulsion introduced by the impurity strongly modifies the properties of the smallest drops. Although only a qualitative comparison is possible, the gross features displayed by our calculations are in agreement with recent experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and easy synthesis of ten arylamidoximes from arylnitriles and hydroxylamine is described. The formation of the arylamides has been observed to a much lesser extent in the present work. A new mechanism for the formation of arylamidoximes, as well as arylamides, from arylnitriles and hydroxylamine is suggested. Quantum mechanical calculations have been carried out to support this mechanism. The enthalpy of formation in conjunction with atomic charges of the reactants and intermediates helped to understand more about the generation of the products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a nonempirical tightening of that bound in both universal and electron number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to sharpened constraints await discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum mechanical calculations at the B3LYP theory level, together with the 6-31G* basis set, were employed to obtain the energy, ionization potential, and polarizabilites for dipyridamole and derivatives, which are compared with their biological activity. Density functional calculations of the spin densities were performed for radical formed by electron abstraction of dipyridamole and derivatives. The unpaired electron remains in dipyridamole is localized on the nitrogen atoms in the substituent positions 1, 3, 5, 7, 11, 12, 13, 14, with participation of the 9 and 10 carbons in the pyrimido-pyrimidine ring. The antioxidant activity is related with ionization potential, polarizability and Log P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC