906 resultados para Decision-support tools


Relevância:

80.00% 80.00%

Publicador:

Resumo:

To capitalise on advances in breast cancer prevention, all women would need to have their breast cancer risk formally assessed. With ~85% of Australians attending primary care clinics at least once a year, primary care is an opportune location for formal breast cancer risk assessment and management. This study assessed the current practice and needs of primary care clinicians regarding assessment and management of breast cancer risk. Two facilitated focus group discussions were held with 17 primary care clinicians (12 GPs and 5 practice nurses (PNs)) as part of a larger needs assessment. Primary care clinicians viewed assessment and management of cardiovascular risk as an intrinsic, expected part of their role, often triggered by practice software prompts and facilitated by use of an online tool. Conversely, assessment of breast cancer risk was not routine and was generally patient- (not clinician-) initiated, and risk management (apart from routine screening) was considered outside the primary care domain. Clinicians suggested that routine assessment and management of breast cancer risk might be achieved if it were widely endorsed as within the remit of primary care and supported by an online risk-assessment and decision aid tool that was integrated into primary care software. This study identified several key issues that would need to be addressed to facilitate the transition to routine assessment and management of breast cancer risk in primary care, based largely on the model used for cardiovascular disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vision of a smart grid is to provide a modern, resilient, and secure electric power grid as it boasts up with a highly reliable and efficient environment through effective use of its information and communication technology (ICT). Generally, the control and operation of a smart grid which integrate the distributed energy resources (DERs) such as, wind power, solar power, energy storage, etc., largely depends on a complex network of computers, softwares, and communication infrastructure superimposed on its physical grid architecture facilitated with the deployment of intelligent decision support system applications. In recent years, multi-agent system (MAS) has been well investigated for wide area power system applications and specially gained a significant attention in smart grid protection and security due to its distributed characteristics. In this chapter, a MAS framework for smart grid protection relay coordination is proposed, which consists of a number of intelligent autonomous agents each of which are embedded with the protection relays. Each agent has its own thread of control that provides it with a capability to operate the circuit breakers (CBs) using the critical clearing time (CCT) information as well as communicate with each other through high speed communication network. Besides physical failure, since smart grid highly depends on communication infrastructure, it is vulnerable to several cyber threats on its information and communication channel. An attacker who has knowledge about a certain smart grid communication framework can easily compromise its appliances and components by corrupting the information which may destabilize a system results a widespread blackout. To mitigate such risk of cyber attacks, a few innovative counter measuring techniques are discussed in this chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a hybrid model consisting of the fuzzy ARTMAP (FAM) neural network and the classification and regression tree (CART) is formulated. FAM is useful for tackling the stability–plasticity dilemma pertaining to data-based learning systems, while CART is useful for depicting its learned knowledge explicitly in a tree structure. By combining the benefits of both models, FAM–CART is capable of learning data samples stably and, at the same time, explaining its predictions with a set of decision rules. In other words, FAM–CART possesses two important properties of an intelligent system, i.e., learning in a stable manner (by overcoming the stability–plasticity dilemma) and extracting useful explanatory rules (by overcoming the opaqueness issue). To evaluate the usefulness of FAM–CART, six benchmark medical data sets from the UCI repository of machine learning and a real-world medical data classification problem are used for evaluation. For performance comparison, a number of performance metrics which include accuracy, specificity, sensitivity, and the area under the receiver operation characteristic curve are computed. The results are quantified with statistical indicators and compared with those reported in the literature. The outcomes positively indicate that FAM–CART is effective for undertaking data classification tasks. In addition to producing good results, it provides justifications of the predictions in the form of a decision tree so that domain users can easily understand the predictions, therefore making it a useful decision support tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient stability, an important issue to avoid the loss of synchronous operation in power systems, can be achieved through proper coordination and operation of protective devices within the critical clearing time (CCT). In view of this, the development of an intelligent decision support system is useful for providing better protection relay coordination. This paper presents an intelligent distributed agent-based scheme to enhance the transient stability of smart grids in light of CCT where a multi-agent framework (MAF) is developed and the agents are represented in such a way that they are equipped with protection relays (PRs). In addition to this, an algorithm is developed which assists the agents to make autonomous decision for controlling circuit breakers (CBs) independently. The proposed agents are responsible for the coordination of protection devices which is done through the precise detection and isolation of faults within the CCT. The agents also perform the duty of reclosing CBs after the clearance of faults. The performance of the proposed approach is demonstrated on a standard IEEE 39-bus test system by considering short-circuit faults at different locations under various load conditions. To further validate the suitability of the proposed scheme a benchmark 16-machine 68-bus power system is also considered. Simulation results show that MAF exhibits full flexibility to adapt the changes in system configurations and increase the stability margin for both test systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.