997 resultados para Data Granulation
Resumo:
For many fisheries, there is a need to develop appropriate indicators, methodologies, and rules for sustainably harvesting marine resources. Complexities of scientific and financial factors often prevent addressing these, but new methodologies offer significant improvements on current and historical approaches. The Australian spanner crab fishery is used to demonstrate this. Between 1999 and 2006, an empirical management procedure using linear regression of fishery catch rates was used to set the annual total allowable catch (quota). A 6-year increasing trend in catch rates revealed shortcomings in the methodology, with a 68% increase in quota calculated for the 2007 fishing year. This large quota increase was prevented by management decision rules. A revised empirical management procedure was developed subsequently, and it achieved a better balance between responsiveness and stability. Simulations identified precautionary harvest and catch rate baselines to set quotas that ensured sustainable crab biomass and favourable performance for management and industry. The management procedure was simple to follow, cost-effective, robust to strong trends and changes in catch rates, and adaptable for use in many fisheries. Application of such “tried-and-tested” empirical systems will allow improved management of both data-limited and data-rich fisheries.
Resumo:
In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.
Resumo:
3,3',5,5'-Tetrabromo-4,4'-dlaminodlphenyMhane has been synthedzed and Its spectral and thermal characterlstlcs have been examined.
Resumo:
A multi-access scheme is proposed for handling priority-based messages in data communication systems through satellites. The different schemes by which time slots are alloted by the satellite are based on a ‘priority index’. The performance characteristics of the system using these schemes under different traffic conditions are discussed.
Resumo:
Abstract is not available.
Resumo:
The number of genetic factors associated with common human traits and disease is increasing rapidly, and the general public is utilizing affordable, direct-to-consumer genetic tests. The results of these tests are often in the public domain. A combination of factors has increased the potential for the indirect estimation of an individual's risk for a particular trait. Here we explain the basic principals underlying risk estimation which allowed us to test the ability to make an indirect risk estimation from genetic data by imputing Dr. James Watson's redacted apolipoprotein E gene (APOE) information. The principles underlying risk prediction from genetic data have been well known and applied for many decades, however, the recent increase in genomic knowledge, and advances in mathematical and statistical techniques and computational power, make it relatively easy to make an accurate but indirect estimation of risk. There is a current hazard for indirect risk estimation that is relevant not only to the subject but also to individuals related to the subject; this risk will likely increase as more detailed genomic data and better computational tools become available.
Resumo:
The aim of this study was to measure seasonal variation in mood and behaviour. The dual vulnerability and latitude effect hypothesis, the risk of increased appetite, weight and other seasonal symptoms to develop metabolic syndrome, and perception of low illumination in quality of life and mental well-being were assessed. These variations are prevalent in persons who live in high latitudes and need balancing of metabolic processes to adapt to environmental changes due to seasons. A randomized sample of 8028 adults aged 30 and over (55% women) participated in an epidemiological health examination study, The Health 2000, applying the probability proportional to population size method for a range of socio-demographic characteristics. They were present in a face-to-face interview at home and health status examination. The questionnaires included the modified versions of the Seasonal Pattern Assessment Questionnaire (SPAQ) and Beck Depression Inventory (BDI), the Health Related Quality of Life (HRQoL) instrument 15D, and the General Health Questionnaire (GHQ). The structured and computerized Munich Composite International Diagnostic Interview (M-CIDI) as part of the interview was used to assess diagnoses of mental disorders, and, the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII) criteria were assessed using all the available information to detect metabolic syndrome. A key finding was that 85% of this nationwide representative sample had seasonal variation in mood and behaviour. Approximately 9% of the study population presented combined seasonal and depressive symptoms with a significant association between their scores, and 2.6% had symptoms that corresponded to Seasonal Affective Disorder (SAD) in severity. Seasonal variations in weight and appetite are two important components that increase the risk of metabolic syndrome. Other factors such as waist circumference and major depressive disorder contributed to the metabolic syndrome as well. Persons reported of having seasonal symptoms were associated with a poorer quality of life and compromised mental well-being, especially if indoors illumination at home and/or at work was experienced as being low. Seasonal and circadian misalignments are suggested to associate with metabolic disorders, and could be remarked if individuals perceive low illumination levels at home and/or at work that affect the health-related quality of life and mental well-being. Keywords: depression, health-related quality of life, illumination, latitude, mental well-being, metabolic syndrome, seasonal variation, winter.
Resumo:
In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.
Resumo:
Screen-less oscillation photography is the method of choice for recording three-dimensional X-ray diffraction data for crystals of biological macromolecules. The geometry of an oscillation camera is extremely simple. However, the manner in which the reciprocal lattice is recorded in any experiment is fairly complex. This depends on the Laue symmetry of the reciprocal lattice, the lattice type, the orientation of the crystal on the camera and to a lesser extent on the unit-cell dimensions. Exploring the relative efficiency of collecting X-ray diffraction data for different crystal orientations prior to data collection might reduce the number of films required to record most of the unique data and the consequent amount of time required for processing these films. Here algorithms are presented suitable for this purpose and results are reported for the 11 Laue groups, different lattice types and crystal orientations often employed in data collection.
Resumo:
Establish an internet platform where spatially referenced data can be viewed, entered and stored.
Resumo:
Development of an internet based spatial data delivery and reporting system for the Australian Cotton Industry.
Resumo:
The relationship between major depressive disorder (MDD) and bipolar disorder (BD) remains controversial. Previous research has reported differences and similarities in risk factors for MDD and BD, such as predisposing personality traits. For example, high neuroticism is related to both disorders, whereas openness to experience is specific for BD. This study examined the genetic association between personality and MDD and BD by applying polygenic scores for neuroticism, extraversion, openness to experience, agreeableness and conscientiousness to both disorders. Polygenic scores reflect the weighted sum of multiple single-nucleotide polymorphism alleles associated with the trait for an individual and were based on a meta-analysis of genome-wide association studies for personality traits including 13,835 subjects. Polygenic scores were tested for MDD in the combined Genetic Association Information Network (GAIN-MDD) and MDD2000+ samples (N=8921) and for BD in the combined Systematic Treatment Enhancement Program for Bipolar Disorder and Wellcome Trust Case-Control Consortium samples (N=6329) using logistic regression analyses. At the phenotypic level, personality dimensions were associated with MDD and BD. Polygenic neuroticism scores were significantly positively associated with MDD, whereas polygenic extraversion scores were significantly positively associated with BD. The explained variance of MDD and BD, approximately 0.1%, was highly comparable to the variance explained by the polygenic personality scores in the corresponding personality traits themselves (between 0.1 and 0.4%). This indicates that the proportions of variance explained in mood disorders are at the upper limit of what could have been expected. This study suggests shared genetic risk factors for neuroticism and MDD on the one hand and for extraversion and BD on the other.
Resumo:
Many novel computer architectures like array and multiprocessors which achieve high performance through the use of concurrency exploit variations of the von Neumann model of computation. The effective utilization of the machines makes special demands on programmers and their programming languages, such as the structuring of data into vectors or the partitioning of programs into concurrent processes. In comparison, the data flow model of computation demands only that the principle of structured programming be followed. A data flow program, often represented as a data flow graph, is a program that expresses a computation by indicating the data dependencies among operators. A data flow computer is a machine designed to take advantage of concurrency in data flow graphs by executing data independent operations in parallel. In this paper, we discuss the design of a high level language (DFL: Data Flow Language) suitable for data flow computers. Some sample procedures in DFL are presented. The implementation aspects have not been discussed in detail since there are no new problems encountered. The language DFL embodies the concepts of functional programming, but in appearance closely resembles Pascal. The language is a better vehicle than the data flow graph for expressing a parallel algorithm. The compiler has been implemented on a DEC 1090 system in Pascal.
Resumo:
Handedness refers to a consistent asymmetry in skill or preferential use between the hands and is related to lateralization within the brain of other functions such as language. Previous twin studies of handedness have yielded inconsistent results resulting from a general lack of statistical power to find significant effects. Here we present analyses from a large international collaborative study of handedness (assessed by writing/drawing or self report) in Australian and Dutch twins and their siblings (54,270 individuals from 25,732 families). Maximum likelihood analyses incorporating the effects of known covariates (sex, year of birth and birth weight) revealed no evidence of hormonal transfer, mirror imaging or twin specific effects. There were also no differences in prevalence between zygosity groups or between twins and their singleton siblings. Consistent with previous meta-analyses, additive genetic effects accounted for about a quarter (23.64%) of the variance (95%CI 20.17, 27.09%) with the remainder accounted for by non-shared environmental influences. The implications of these findings for handedness both as a primary phenotype and as a covariate in linkage and association analyses are discussed.
Resumo:
Many fisheries worldwide have adopted vessel monitoring systems (VMS) for compliance purposes. An added benefit of these systems is that they collect a large amount of data on vessel locations at very fine spatial and temporal scales. This data can provide a wealth of information for stock assessment, research, and management. However, since most VMS implementations record vessel location at set time intervals with no regard to vessel activity, some methodology is required to determine which data records correspond to fishing activity. This paper describes a probabilistic approach, based on hidden Markov models (HMMs), to determine vessel activity. A HMM provides a natural framework for the problem and, by definition, models the intrinsic temporal correlation of the data. The paper describes the general approach that was developed and presents an example of this approach applied to the Queensland trawl fishery off the coast of eastern Australia. Finally, a simulation experiment is presented that compares the misallocation rates of the HMM approach with other approaches.