982 resultados para Damage mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of damage accumulation and corresponding failure evolution are prerequisite for effective maintenance of civil engineering so as to avoid disaster. Based on statistical mesoscopic damage mechanics, it was revealed that there are three stages in the process of deformation, damage and failure of multiscale heterogeneous elastic-brittle medium. These are uniformly distributed damage, localized damage and catastrophic failure. In order to identify the transitions from scattering damage to macroscopically localized one, a condition for damage localization was given. The experiments of rock under uniaxial compression with the aid of observations of acoustic emission and speckle correlation do support the concept of localization. This provides a potential approach to properly evaluate damage accumulation in practice. In addition, it is found in the experiments that catastrophic failure displays critical sensitivity. This gives a helpful clue to the prediction of catastrophic failure. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of substrate laser-discrete quenching on the degradation failure of chromium-plated gun barrels was metallurgically investigated. The results show that substrate laser-discrete quenching changes the failure patterns of chromium coatings during firing, and some periodic through-thickness cracks in the fired chromium coatings are justly located at original substrate zones between two adjacent laser-quenched tracks. Moreover, chromium coatings and the laser-quenched zones on the substrate are simultaneously degraded in microstructure and property during firing. Furthermore, the periodic structure of the laser-discrete-quenched steel (LDQS) substrate near the breech remains after firing, and the hardness of the fired laser-quenched zones is still higher than that of original substrates. The specific failure features were utilized to illustrate the mechanism of the extended service life of chromium-plated gun barrels with the LDQS substrate. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the production of a new technique that can offer both good formability and high image clarity for texturing metal sheet, laser-textured sheet has attracted the attention of many manufacturers and users. Among the many subjects to be studied, plastic instability behaviour of the laser-textured sheet is one of most important to understand its ability in extending material ductility and to appropriately control this technique. Experimental investigations are carried out in this paper to study the macroscopic behaviour and microstructural mechanism of the laser-textured sheet, and comparison is made with the normal sheet taken from the same coil of metal sheet. It is demonstrated that, the difference in the behaviour of plastic instability obviously shows tendency to delay strain localization and the onset of thickness necking. Shear banding and internal void damage are spread to a much wider region in the sheet being laser-textured. The prestrained microcraters enforced on the surface of the textured sheet act as hardening spots, which are likely to share out deformation and inhibit the increasing rate of voiding, and eventually favouring the ductility of the material used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a statistical mesomechanical approach to the evolution of damage. A self-closed formulation of the damage evolution is derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates epsilon greater than or equal to 10(3) s(-1)). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A void growth relations for ductile porous materials under intense dynamic general loading condition is presented. The mathematical model includes the influence of inertial effects, material rate sensitivity, as well as the contribution of void surface energy and material work-hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated with a finite-difference dynamic code in which the theoretical model presented in this paper is incorporated.