949 resultados para DNA damage
Resumo:
The mushroom Agaricus blazei has been extensively investigated because of evidence of its antimutagenic, antitumor, and anticarcinogenic activities. This study investigated the clastogenic and/or anticlastogenic activity of aqueous extract of Agaricus blazei (10% w/v) in drug-metabolizing rat hepatoma tissue cells (HTCs), with continuous treatment and treatment during different phases of the cell cycle. DNA damage was induced utilizing two directacting agents-methyl methane sulfonate and ethyl methane sulfonate-and two indirect-acting agents-2-aminoanthracene and cyclophosphamide. The aqueous extract of A. blazei with either continuous treatment or treatment during different phases of the cell cycle showed clastogenic activity. The results with continuous treatment showed that A. blazei does not protect against DNA damage-inducing agents that are direct acting. Meanwhile, when combined with indirect-acting agents, a protective effect was demonstrated. A protective effect was also found during different phases of the cell cycle when cells were treated with indirect-acting agents. The protective effects against indirect-acting agents (continuous treatment and during the different phases of the cell cycle) suggest that A. blazei may provide some health benefits to the public when used as a functional food.
Resumo:
Agaricus blazei Murrill ss. Heinem, known as the sun mushroom or himematsutake, is a basidiomycete native to Brazil, which is popular for its medicinal properties. The aim of this study was to test hexane extracts (one fraction and its four sub-fractions) of A. blazei for bioactivity in cultured mammalian cells (CHO-K1). The comet assay, the colony forming assay (CFA) and CHO/HGPRT gene mutation assay were used respectively to determine genotoxicity, cytotoxicity and antimutagenicity of these extracts at different concentrations. The cells were incubated in culture medium and treated for 3 h according to the standard protocol for each assay. The DNA damage-inducing agent ethylmethane sulfonate (EMS) was utilized as the positive control and also in combination with extracts to test for a protective effect. Statistical analysis of the data was performed using analysis of variance (ANOVA) and Tukey's test. A relationship between cytotoxicity and genotoxicity could be established and two extracts EH6B and EH6D showed a protective tendency, while the others did not, with the primary extract EH6 causing the most substantial damage to genetic material. These findings warrant more in-depth studies of the active principles of this mushroom. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coccoloba mollis (Family Polygonaceae) is a medicinal plant popularly used in cases of memory loss, stress, insomnia, anemia, impaired vision, and sexual impotence, but the scientific literature, to date, lacks studies on the biological effects of this species, particularly with regard to cytotoxicity and induction of DNA damage. The aim of the present study was to assess in vitro (in hepatic HTC cells) ethanolic extracts of the roots and leaves of C. mollis for cytotoxicity, genotoxicity, and induction of apoptosis. For these evaluations the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay, comet assay, micronucleus test with cytokinesis block, and an in situ test for detection of apoptotic cells with acridine orange staining were used. The results showed that the extract obtained from the roots of C. mollis is more cytotoxic than that obtained from the leaves and that the reduction in cell viability observed in the MTT assay was a result, at least in part, from the induction of apoptosis. Both extracts induced DNA damage at a concentration of 20 mu g/mL in the comet assay, but no genotoxicity was detected with any of the treatments carried out in the micronucleus test.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The sun mushroom is the popular name for the Agaricus blazei Murill fungus, a mushroom native to south-eastern Brazil, which has been frequently used in popular medicine mainly in the form of tea to treat various ailments (stress, diabetes, etc.). In the present study, the genotoxic and/or anti-genotoxic effects ofA. blazei on mammalian cells in culture was assessed by checking the increase or reduction of micronucleus (MN) frequency and comets. The sun mushroom (lineage 99/26) was used as aqueous extracts prepared (2.5%) at three different temperatures (60, 25 and 4°C). The in vitro micronucleus (MN) test in binucleated cells and comet assay were used in V79 cells cultivated in HAM-F10+DMEM medium (1:1), supplemented with 10% of fetal bovine serum. The experiments were divided into four treatment types: 1. Negative control; 2. Positive control with MMS; 3. Treatments with the three forms of extracts (60, 25 and 4°C); and 4. Treatments with the extracts in different associations (simultaneous, pre-treatment, post-treatment and simultaneous after pre-incubation for 1 h) with MMS. None of the A. blazei extracts show genotoxic activity. In the comet assay no protecting effect was found. The results obtained in the MN test showed that the three forms of extracts used had protective activity, suggesting that the compound or active ingredients of A. blazei are always present in these extracts. The greater protective efficiency of the simultaneous treatment and simultaneous treatment with pre-incubation mixture with MMS suggests that the extracts have an antimutagenic action of the desmutagenic type. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Fish blood erythrocytes are frequently used as sentinels in biomonitoring studies. Usually, fish blood is collected by painful cardiac or caudal vein punctures. Previous anesthesia could decrease animal suffering but it is not known at present whether anesthesia can cause confounding effects. Therefore, using the alkaline single cell gel (SCG)/comet assay with blood erythrocytes of the cichlid fish Nile tilapia, we tested for a possible modulation of induced DNA damage (methyl methanesulfonate; MMS) by the anesthetic benzocaine administered by bath exposure (80mg/l for ∼10min). Furthermore, benzocaine (80-600mg/l) was tested for its genotoxic potential on fish erythrocytes in vitro and for potential interactions with two known genotoxins (MMS and hydrogen peroxide). Our results did neither indicate a significant increase in the amount of DNA damage (even after a 48h follow-up), nor indicated interactions with MMS-induced DNA damage when fish were exposed to benzocaine in vivo. There was also no increase in DNA damage after in vitro exposure of fish erythrocytes to benzocaine. Clear concentration-related effects were observed for the two genotoxins in vitro, which were not significantly altered by the presence of benzocaine. These results suggest that anesthesia of fish does not confound comet assay results and the use of blood samples from anesthetized fish can be recommended with regard to animal welfare. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Formocresol, paramonochlorophenol, and calcium hydroxide are widely used in dentistry because of their antibacterial activities in root canal disinfection. However, the results of genotoxicity studies using these materials are inconsistent in literature. The goal of this study was to examine the genotoxic potential of formocresol, paramonochlorophenol, and calcium hydroxide using mouse lymphoma cells and human fibroblasts cells in vitro by the comet assay. Data were assessed by Kruskal-Wallis nonparametric test. The results showed that all compounds tested did not cause DNA damage for the tail moment or tail intensity parameters. These findings suggest that formocresol, paramonochlorophenol, and calcium hydroxide do not promote DNA damage in mammalian cells and that the comet assay is a suitable tool to investigate genotoxicity.
Resumo:
During the last years, the emission of heavy metals to the environment has increased, causing a severe negative impact to the ecosystems and seriously compromising human health due to their mutagenic potential. Tri- (III) and hexavalent (VI) chromium (Cr) constitute the oxidative states of the metal chromium that are active in living organisms. These two oxidation states of the chromium differ with regards to their cellular effects, mainly due to the different abilities they possess in relation to easy of transport through biological membranes. Cr VI is transported into the cell through transference channels of endogenous anions that are isostructural and isoelectronical to Cr VI, such as SO 4 -2 and HPO 4 -2. On the other hand, Cr III is unable to diffuse through the cell membrane. Its existence inside the cells is generally due to the reduction of Cr VI, the endocytosis, or the absortion by the cells via phagocytosis. Cr III acts directly on the DNA molecule, while Cr VI reacts little with this molecule. In the ecosystem, however, Cr VI is more dangerous since this is the form that presents greater reactivity with biological membranes, crossing them and being easily incorporated into the cell. In the cell it is biotransformed to Cr III, a potentially mutagenic molecule. In vivo and in vitro studies have shown that organisms exposed to Cr VI present greater induction to a variety of damages to the DNA molecule. Among the damages induced by Cr, changes in the structure of the DNA molecule have been reported, with breaks of the major chain and base oxidation. In the organisms, these alterations generate chromosomal aberrations, micronucleus formation, sister chromatid exchanges, and errors in DNA synthesis.
Resumo:
Objective: To investigate if formocresol, paramonochlorophenol, or calcium hydroxide modulate the genotoxic effects induced by the oxidatively damaging agent hydrogen peroxide (H 2O 2) or the alkylating agent methyl methanesulfonate (MMS) in vitro by using single cell gel (comet) assay. Study design: Chinese hamster ovary (CHO) cells in culture were exposed directly to formocresol, paramonochlorophenol, or calcium hydroxide (adjusted to 100 μg/mL) for 1 hour at 37°C. Subsequently the cultures were incubated with increasing concentrations (0-10 μmol/L) of MMS in phosphate-buffered solution (PBS) for 15 minutes at 37°C or of H 2O 2 at increasing concentrations (0-100 μmol/L) in distilled water for 5 minutes on ice. The negative control cells were treated with PBS for 1 hour at 37°C. The parameter from the comet assay (tail moment) was assessed by the Kruskal-Wallis nonparametric test followed by a post hoc analysis (Dunn test). Results: Clear concentration-related effects were observed for the genotoxin-exposed CHO cells. Increase of MMS-induced DNA damage was not significantly altered by the presence of the compounds tested. Similarly, no significant changes were observed when hydrogen peroxide was used with the endodontic compounds evaluated. Conclusion: Formocresol, paramonochlorophenol, and calcium hydroxide are not able to modulate alkylation-induced genotoxicity or oxidative DNA damage as depicted by the single cell gel (comet) assay. © 2006 Mosby, Inc. All rights reserved.
Resumo:
There is high interest in the natural products properties due to their use in popular medicine. Agaricus blazei Murrill ss. Heinem. (Ab) is native to Brazil and has been widely disseminated because its medicinal properties. In the present study, the genotoxic and antigenotoxic potential of Ab extracts were investigated using the comet assay. The cells utilized were the non drug-metabolizing line CHO-k1 (Chinese hamster ovary) and the drug-metabolizing line HTC (rat hepatoma). Cells were treated for 3 h in the absence of fetal bovain serum (FBS) with methanolic, hexanic and n-butanolic extracts at 50 μg/ml and 0.75% aqueous extract to test for genotoxicity. Antigenotoxic effects of extracts were determined in cells exposed to the DNA damage inducing agent ethyl methanesulfonate under simultaneous or simultaneous with 1 h pre-incubation conditions. The extracts did not show genotoxicity in HTC, while they were genotoxic in CHO-k1. No antigenotoxic effect was observed with any extract under any condition. These results demonstrate that the metabolism in presence or in absence has a direct influence on the genotoxicity of these extracts. © 2006 The Japan Mendel Society.
Resumo:
Objective: Taking into consideration that DNA damage plays an important role in carcinogenesis, the purpose of this study was to evaluate whether regular and white mineral trioxide aggregate (MTA) are able to induce genetic damage in primary human cells. Study design: Human peripheral lymphocytes obtained from 10 healthy volunteers were exposed to 2 presentation forms of MTA at final concentrations ranging from 1 to 1000 μg/mL for 1 hour at 37°C. The negative control group was treated with vehicle control (phosphate buffer solution, PBS) for 1 hour at 37°C and the positive control group was treated with hydrogen peroxide (at 100 μM) for 5 minutes on ice. Results were analyzed by the Friedman nonparametric test. Results: The results pointed out that either regular or white MTA in all concentrations tested did not induce DNA breakage in human peripheral lymphocytes as depicted by the mean tail moment. Conclusion: In summary, our results indicate that exposure to MTA may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay. © 2006 Mosby, Inc. All rights reserved.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
The comet assay has been conducted with numerous cell lines to assess in vitro genotoxicity. In order to use the comet assay as part of an in vitro test for evaluating genotoxicity, however, there are cell-specific factors that need to be better understood. In this present study we have evaluated some factors that may impact upon the DNA damage detected in whole blood (WB) cells and lymphocytes (ILs). Experiments were conducted comparing responses of both cells, and investigating the effects of the female hormonal cycle, and oral contraceptive (OC) use on DNA damage detection in the in vitro comet assay, at three sampling time. No significant differences were detected in the basal levels of DNA damage detected in ILs and WB cells from women OC users and non-users and from men. Basal DNA damage in ILs was unaffected by gender and stage of the menstrual cycle or the stage of the treatment schedule. Our results also indicated that the H2O2 induces DNA damage in human lymphocytes independently of gender, low-dose OC use and hormonal fluctuation. However, data showed that in 3rd sampling of menstrual cycle, lymphocytes were more resistant to H2O2-induced DNA damage than those from OC users and men. © 2007 Elsevier Ltd. All rights reserved.