930 resultados para DISPERSION
Resumo:
Peer reviewed
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
We demonstrate a novel optically tunable dispersion compensator based on pumping a chirped grating made in Er/Yb co-doped fiber. The dispersion was tuned from 900 to 1900ps/nm and also from-600 to-950ps/nm in the experiment. © 2010 Optical Society of America.
Resumo:
Different generation modes of all-positive-dispersion all-fibre Yb laser mode-locked due to effect of non-linear polarization evolution are investigated. For the first time we realized in the same laser both generation of single picoseconds pulse train and a newly observed lasing regime where generated are picosecond wave-packets, each being a train of femtosecond sub-pulses. Using both experimental results and numerical modeling we discuss in detail the mechanisms of laser mode-locking and switching of generation regimes and show a strong dependence of output laser characteristics on configuration of polarization controllers. A good qualitative agreement between experimental results and numerical modeling is demonstrated. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
The model of Reshaping and Re-amplification (2R) regenerator based on High Nonlinear Dispersion Imbalanced Loop Mirror (HN-DILM) has been designed to examine its capability to reduce the necessary of fiber loop length and input peak power by deploying High Non linear Fiber (HNLF) compared to Dispersion Shifted Fiber (DSF). The simulation results show by deployed a HNLF as a nonlinear element in Dispersion Imbalanced Loop Mirror (DILM) requires only 400mW peak powers to obtain a peak of transmission compared to DSF which requires a higher peak power at 2000mW to obtain a certain transmissivity. It also shows that HNLF required shorter fiber length to achieve the highest transmission. The 2R regenerator also increases the extinction ratio (ER) of the entire system. © 2010 IEEE.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In this study, it was developed a methodology for the determination of the dispersion of a gaseous tracer in porous media using the radiotracer technique. In order to evaluate several porous media, a cylindrical filter was constructed in PVC and connected to a system with constant flow. Inside this unit silica crystals (16-20) mesh was used as porous media and CH3Br (Methyl Bromide) marked with 82Br was used as radiotracer. An instantaneous pulse of tracer was applied in the system entrance and registered by two NaI (3x3)” scintillation detectors located one before and the other after the filter. The curves produced by the radioactive cloud and recorded by the detector were analyzed statistically using the weighted moment method. The mathematical model one considered as great dispersion of tracer was used to evaluate the flow conditions inside the filter system. The results show us that the weight moment method associated with radiotracer techniques is useful to evaluated an industrial filter and allows to measure the residence time distribution, τ, and the axial dispersion, DAB, gas in a porous medium.
Resumo:
D’abord, nous présentons les principes physiques nous permettant de modéliser et comprendre le phénomène de propagation linéaire des impulsions lumineuses dans un milieu homogène, dans les guides d’ondes planaires et enfin dans les fibres optiques microstructurées. Ensuite, nous faisons une analyse mathématique rigoureuse des équations linéaires de propagation et posons le problème comme celui de la recherche de valeurs propres d’opérateurs auto-adjoints dans un espace de Hilbert. On verra que ces résultats théoriques s’appliquent aux équations simulées dans le logiciel Comsol Multiphysics. Enfin, nous recensons et proposons différentes façons de prédire les valeurs de dispersion chromatique et d’atténuation dans les fibres microstructurées à coeur suspendu en utilisant les notions et équations discutés dans les deux premiers chapitres. Le choix de la géométrie, du matériau et de la longueur d’onde de la lumière transmise sont parmi les variables étudiées numériquement. Nous ferons également un exemple détaillé d’utilisation du logiciel Comsol Multiphysics pour construire un modèle de fibre optique microstructurée.
Resumo:
The modelling of diffusive terms in particle methods is a delicate matter and several models were proposed in the literature to take such terms into account. The diffusion velocity method (DVM), originally designed for the diffusion of passive scalars, turns diffusive terms into convective ones by expressing them as a divergence involving a so-called diffusion velocity. In this paper, DVM is extended to the diffusion of vectorial quantities in the three-dimensional Navier–Stokes equations, in their incompressible, velocity–vorticity formulation. The integration of a large eddy simulation (LES) turbulence model is investigated and a DVM general formulation is proposed. Either with or without LES, a novel expression of the diffusion velocity is derived, which makes it easier to approximate and which highlights the analogy with the original formulation for scalar transport. From this statement, DVM is then analysed in one dimension, both analytically and numerically on test cases to point out its good behaviour.
Resumo:
Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.