984 resultados para Cutting stock problems
Resumo:
Prey-size selectivity by Steller sea lions (Eumetopias jubatus) is relevant for understanding the foraging behavior of this declining predator, but studies have been problematic because of the absence and erosion of otoliths usually used to estimate fish length. Therefore, we developed regression formulae to estimate fish length from seven diagnostic cranial structures of walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius). For both species, all structure measurements were related with fork length of prey (r2 range: 0.78−0.99). Fork length (FL) of walleye pollock and Atka mackerel consumed by Steller sea lions was estimated by applying these regression models to cranial structures recovered from scats (feces) collected between 1998 and 2000 across the range of the Alaskan western stock of Steller sea lions. Experimentally derived digestion correction factors were applied to take into account loss of size due to digestion. Fork lengths of walleye pollock consumed by Steller sea lions ranged from 3.7 to 70.8 cm (mean=39.3 cm, SD=14.3 cm, n=666) and Atka mackerel ranged from 15.3 to 49.6 cm (mean=32.3 cm, SD=5.9 cm, n=1685). Although sample sizes were limited, a greater proportion of juvenile (≤20 cm) walleye pollock were found in samples collected during the summer (June−September) on haul-out sites (64% juveniles, n=11 scats) than on summer rookeries (9% juveniles, n=132 scats) or winter (February−March) haul-out sites (3% juveniles, n=69 scats). Annual changes in the size of Atka mackerel consumed by Steller sea lions corresponded to changes in the length distribution of Atka mackerel resulting from exceptionally strong year classes. Considerable overlap (>51%) in the size of walleye pollock and Atka mackerel taken by Steller sea lions and the sizes of these species caught by the commercial trawl fishery were demonstrated.
Resumo:
Lengths of walleye pollock (Theragra chalcogramma) consumed by Steller sea lions (Eumetopias jubatus) were estimated by using allometric regressions applied to seven diagnostic cranial structures recovered from 531 scats collected in Southeast Alaska between 1994 and 1999. Only elements in good and fair condition were selected. Selected structural measurements were corrected for loss of size due to erosion by using experimentally derived condition-specific digestion correction factors. Correcting for digestion increased the estimated length of fish consumed by 23%, and the average mass of fish consumed by 88%. Mean corrected fork length (FL) of pollock consumed was 42.4 ±11.6 cm (range=10.0−78.1 cm, n=909). Adult pollock (FL>45.0 cm) occurred more frequently in scats collected from rookeries along the open ocean coastline of Southeast Alaska during June and July (74% adults, mean FL=48.4 cm) than they did in scats from haul-outs located in inside waters between October and May (51% adults, mean FL=38.4 cm). Overall, the contribution of juvenile pollock (≤20 cm) to the sea lion diet was insignificant; whereas adults contributed 44% to the diet by number and 74% by mass. On average, larger pollock were eaten in summer at rookeries throughout Southeast Alaska than at rookeries in the Gulf of Alaska and the Bering Sea. Overall it appears that Steller sea lions are capable of consuming a wide size range of pollock, and the bulk of fish fall between 20 and 60 cm. The use of cranial hard parts other than otoliths and the application of digestion correction factors are fundamental to correctly estimating the sizes of prey consumed by sea lions and determining the extent that these sizes overlap with the sizes of pollock caught by commercial fisheries.
Resumo:
Fishery-independent estimates of spawning biomass (BSP) of the Pacific sardine (Sardinops sagax) on the south and lower west coasts of Western Australia (WA) were obtained periodically between 1991 and 1999 by using the daily egg production method (DEPM). Ichthyoplankton data collected during these surveys, specifically the presence or absence of S. sagax eggs, were used to investigate trends in the spawning area of S. sagax within each of four regions. The expectation was that trends in BSP and spawning area were positively related. With the DEPM model, estimates of BSP will change proportionally with spawning area if all other variables remain constant. The proportion of positive stations (PPS), i.e., stations with nonzero egg counts — an objective estimator of spawning area — was high for all south coast regions during the early 1990s (a period when the estimated BSP was also high) and then decreased after the mid-1990s. There was a decrease in PPS from the mid-1990s to 1999. The particularly low estimates in 1999 followed a severe epidemic mass mortality of S. sagax throughout their range across southern Australia. Deviations from the expected relationship between BSP and PPS were used to identify uncertainty around estimates of BSP. Because estimation of spawning area is subject to less sampling bias than estimation of BSP, the deviation in the relation between the two provides an objective basis for adjusting some estimates of the latter. Such an approach is particularly useful for fisheries management purposes when sampling problems are suspected to be present. The analysis of PPS undertaken from the same set of samples from which the DEPM estimate is derived will help provide information for stock assessments and for the management of purse-seine fisheries.
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.
Resumo:
Stock-rebuilding time isopleths relate constant levels of fishing mortality (F), stock biomass, and management goals to rebuilding times for overfished stocks. We used simulation models with uncertainty about FMSY and variability in annual intrinsic growth rates (ry) to calculate rebuilding time isopleths for Georges Bank yellowtail flounder, Limanda ferruginea, and cowcod rockfish, Sebastes levis, in the Southern California Bight. Stock-rebuilding time distributions from stochastic models were variable and right-skewed, indicating that rebuilding may take less or substantially more time than expected. The probability of long rebuilding times increased with lower biomass, higher F, uncertainty about FMSY, and autocorrelation in ry values. Uncertainty about FMSY had the greatest effect on rebuilding times. Median recovery times from simulations were insensitive to model assumptions about uncertainty and variability, suggesting that median recovery times should be considered in rebuilding plans. Isopleths calculated in previous studies by deterministic models approximate median, rather than mean, rebuilding times. Stochastic models allow managers to specify and evaluate the risk (measured as a probability) of not achieving a rebuilding goal according to schedule. Rebuilding time isopleths can be used for stocks with a range of life histories and can be based on any type of population dynamics model. They are directly applicable with constant F rebuilding plans but are also useful in other cases. We used new algorithms for simulating autocorrelated process errors from a gamma distribution and evaluated sensitivity to statistical distributions assumed for ry. Uncertainty about current biomass and fishing mortality rates can be considered with rebuilding time isopleths in evaluating and designing constant-F rebuilding plans.