948 resultados para Cryptography Statistical methods
Resumo:
BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.
Resumo:
To know how much misalignment is tolerable for a particle accelerator is an important input for the design of these machines. In particle accelerators the beam must be guided and focused using bending magnets and magnetic lenses, respectively. The alignment of the lenses along a transport line aims to ensure that the beam passes through their optical axes and represents a critical point in the assembly of the machine. There are more and more accelerators in the world, many of which are very small machines. Because the existing literature and programs are mostly targeted for large machines. in this work we describe a method suitable for small machines. This method consists in determining statistically the alignment tolerance in a set of lenses. Differently from the methods used in standard simulation codes for particle accelerators, the statistical method we propose makes it possible to evaluate particle losses as a function of the alignment accuracy of the optical elements in a transport line. Results for 100 key electrons, on the 3.5-m long conforming beam stage of the IFUSP Microtron are presented as an example of use. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We report a statistical analysis of Doppler broadening coincidence data of electron-positron annihilation radiation in silicon using a (22)Na source. The Doppler broadening coincidence spectrum was fit using a model function that included positron annihilation at rest with 1s, 2s, 2p, and valence band electrons. In-flight positron annihilation was also fit. The response functions of the detectors accounted for backscattering, combinations of Compton effects, pileup, ballistic deficit, and pulse-shaping problems. The procedure allows the quantitative determination of positron annihilation with core and valence electron intensities as well as their standard deviations directly from the experimental spectrum. The results obtained for the core and valence band electron annihilation intensities were 2.56(9)% and 97.44(9)%, respectively. These intensities are consistent with published experimental data treated by conventional analysis methods. This new procedure has the advantage of allowing one to distinguish additional effects from those associated with the detection system response function. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We propose a likelihood ratio test ( LRT) with Bartlett correction in order to identify Granger causality between sets of time series gene expression data. The performance of the proposed test is compared to a previously published bootstrapbased approach. LRT is shown to be significantly faster and statistically powerful even within non- Normal distributions. An R package named gGranger containing an implementation for both Granger causality identification tests is also provided.
Resumo:
Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.
Resumo:
Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best.
Resumo:
Who was the cowboy in Washington? What is the land of sushi? Most people would have answers to these questions readily available,yet, modern search engines, arguably the epitome of technology in finding answers to most questions, are completely unable to do so. It seems that people capture few information items to rapidly converge to a seemingly 'obvious' solution. We will study approaches for this problem, with two additional hard demands that constrain the space of possible theories: the sought model must be both psychologically and neuroscienti cally plausible. Building on top of the mathematical model of memory called Sparse Distributed Memory, we will see how some well-known methods in cryptography can point toward a promising, comprehensive, solution that preserves four crucial properties of human psychology.
Resumo:
Extreme rainfall events have triggered a significant number of flash floods in Madeira Island along its past and recent history. Madeira is a volcanic island where the spatial rainfall distribution is strongly affected by its rugged topography. In this thesis, annual maximum of daily rainfall data from 25 rain gauge stations located in Madeira Island were modelled by the generalised extreme value distribution. Also, the hypothesis of a Gumbel distribution was tested by two methods and the existence of a linear trend in both distributions parameters was analysed. Estimates for the 50– and 100–year return levels were also obtained. Still in an univariate context, the assumption that a distribution function belongs to the domain of attraction of an extreme value distribution for monthly maximum rainfall data was tested for the rainy season. The available data was then analysed in order to find the most suitable domain of attraction for the sampled distribution. In a different approach, a search for thresholds was also performed for daily rainfall values through a graphical analysis. In a multivariate context, a study was made on the dependence between extreme rainfall values from the considered stations based on Kendall’s τ measure. This study suggests the influence of factors such as altitude, slope orientation, distance between stations and their proximity of the sea on the spatial distribution of extreme rainfall. Groups of three pairwise associated stations were also obtained and an adjustment was made to a family of extreme value copulas involving the Marshall–Olkin family, whose parameters can be written as a function of Kendall’s τ association measures of the obtained pairs.
Resumo:
The purpose of this study was to analyze histologically the influence of platelet-rich plasma (PRP) coagulated with two different activators on bone healing in surgically created critical-size defects (CSD) in rat calvaria.Forty-eight rats were divided into three groups: C, PRP-C and PRP-T. An 8 mm diameter CSD was created in the calvarium of each animal. In group C, the defect was filled by a blood clot only. In groups PRP-C and PRP-T, the defect was filled with PRP activated with either calcium chloride or thromboplastin solution, respectively. Each group was divided into two subgroups (n = 8 per subgroup) and killed at either 4 or 12 weeks postoperatively. Histologic and histometric analyses were performed. The amount of new bone formed was calculated as a percentage of the total area of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance, Tukey's post hoc test, p < 0.05).No defect completely regenerated with bone. Group PRP-C had a statistically greater amount of bone formation than groups C and PRP-T at both time points of analysis. No statistically significant differences were observed between groups C and PRP-T.It can be concluded that the type of activator used to initiate PRP clot formation influences its biological effect on bone healing in CSD in rat calvaria.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
INTRODUCTION: Visual analysis is widely used to interpret regional cerebral blood flow (rCBF) SPECT images in clinical practice despite its limitations. Automated methods are employed to investigate between-group rCBF differences in research Studies but have rarely been explored in individual analyses.OBJECTIVES: To compare visual inspection by nuclear physicians with the automated statistical parametric mapping program using a SPECT dataset of patients with neurological disorders and normal control images.METHODS: Using statistical parametric mapping, 14 SPECT images from patients with various neurological disorders were compared individually with a databank of 32 normal images using a statistical threshold of p<0.05 (corrected for multiple comparisons at the level of individual voxels or clusters). Statistical parametric mapping results were compared with Visual analyses by a nuclear physician highly experienced in neurology (A) as well as a nuclear physician with a general background of experience (B) who independently classified images as normal or altered, and determined the location of changes and the severity.RESULTS: of the 32 images of the normal databank, 4 generated maps showing rCBF abnormalities (p<0.05, corrected). Among the 14 images from patients with neurological disorders, 13 showed rCBF alterations. Statistical parametric mapping and physician A completely agreed on 84.37% and 64.28% of cases from the normal databank and neurological disorders, respectively. The agreement between statistical parametric mapping and ratings of physician B were lower (71.18% and 35.71%, respectively).CONCLUSION: Statistical parametric mapping replicated the findings described by the more experienced nuclear physician. This finding suggests that automated methods for individually analyzing rCBF SPECT images may be a valuable resource to complement visual inspection in clinical practice.