999 resultados para Crop reduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR) observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.