959 resultados para Crawford, Frank


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caption: Zur Erinnerung an das fuenfzigjaehrige Gruendungsfest Saechsisch Anhaltinischen Bezirksvereins Deutscher Ingenieure am 11. und 12. Mai 1912 in Bernburg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book begins with an overview of the use of biomaterials in contemporary healthcare and the process of developing novel biomaterials; the key issues and challenges associated with the design of complex implantable systems are also highlighted. The book then reviews the main materials used in functional biomaterials, particularly their properties and applications. Individual chapters focus on both natural and synthetic polymers, metallic biomaterials, and bio-inert and bioactive ceramics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas the employment of nanotechnology in electronics and optics engineering is relatively well established, the use of nanostructured materials in medicine and biology is undoubtedly novel. Certain nanoscale surface phenomena are being exploited to promote or prevent the attachment of living cells. However, as yet, it has not been possible to develop methods that completely prevent cells from attaching to solid surfaces, since the mechanisms by which living cells interact with the nanoscale surface characteristics of these substrates are still poorly understood. Recently, novel and advanced surface characterisation techniques have been developed that allow the precise molecular and atomic scale characterisation of both living cells and the solid surfaces to which they attach. Given this additional capability, it may now be possible to define boundaries, or minimum dimensions, at which a surface feature can exert influence over an attaching living organism.This review explores the current research on the interaction of living cells with both native and nanostructured surfaces, and the role that these surface properties play in the different stages of cell attachment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular polysaccharides are as structurally and functionally diverse as the bacteria that synthesise them. They can be present in many forms, including cell-bound capsular polysaccharides, unbound "slime", and as O-antigen component of lipopolysaccharide, with an equally wide range of biological functions. These include resistance to desiccation, protection against nonspecific and specific host immunity, and adherence. Unsurprisingly then, much effort has been made to catalogue the enormous structural complexity of the extracellular polysaccharides made possible by the wide assortment of available monosaccharide combinations, non-carbohydrate residues, and linkage types, and to elucidate their biosynthesis and export. In addition, the work is driven by the commercial potential of these microbial substances in food, pharmaceutics and biomedical industries. Most recently, bacteria-mediated environmental restoration and bioleaching have been attracting much attention owing to their potential to remediate environmental effluents produced by the mining and metallurgy industries. In spite of technological advances in chemistry, molecular biology and imaging techniques that allowed for considerable expansion of knowledge pertaining to the bacterial surface polysaccharides, current understanding of the mechanisms of synthesis and regulation of extracellular polysaccharides is yet to fully explain their structural intricacy and functional variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superhydrophobic polymers are particularly attractive materials, as they combine low cost, ease of processing, and compatibility with a variety of applications. Surfaces that display the Cassie–Baxter wetting state are particularly attractive for their self-cleaning properties. In this chapter, a brief overview of the wetting principles will be followed by an account of several techniques currently used to impart superhydrophobicity onto polymer surfaces. Surface roughness and surface structure will be the focus of this chapter, with an emphasis on topographies that exhibit microscale or nanoscale features arranged in hierarchical order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion behaviour of ammonium perchlorate-potassium perchlorate pellets is studied using Crawford strand burners. At low concentrations of potassium perchlorate (up to 30 percent potassium perchlorate) the burning rate of ammonium perchlorate-potassium perchlorate condensed mixtures increases with potassium perchlorate content. Above 40 percent potassium perchlorate content, combustion sustenance becomes difficult. Decomposition products of ammonium perchlorate sensitize the melting and subsequent decomposition of potassium perchlorate. The results are explained in terms of the melt layer thickness, flame temperature and the resultant surface temperature, and heat wave penetration into the solid. The study suggests the importance of melt layer on the burning surface in the deflagration behaviour of ammonium perchlorate-potassium perchlorate condensed mixtures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to examine how workers' negative age stereotypes (i.e., denying older workers' ability to develop) and negative meta-stereotypes (i.e., beliefs that the majority of colleagues feel negative about older workers) are related to their attitudes towards retirement (i.e., occupational future time perspective and intention to retire), and whether the strength of these relationships is influenced by workers' self-categorization as an “older” person. Results of a study among Dutch taxi drivers provided mixed support for the hypotheses. Negative meta-stereotypes, but not negative age stereotypes, were associated with fewer perceived opportunities until retirement and, in turn, a stronger intention to retire. Self-categorization moderated the relationships between negative age (meta-)stereotypes and occupational future time perspective. However, contrary to expectations, the relations were stronger among workers with a low self-categorization as an older person in comparison with workers with a high self-categorization in this regard. Overall, results highlight the importance of psychosocial processes in the study of retirement intentions and their antecedents.