958 resultados para Cost Optimization
Resumo:
Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.
Resumo:
Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.
Resumo:
Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electret microphone, amplifier and filter. It makes use of the windows sound card and associated software for data acquisition and analysis. The measurement system is calibrated using a professional sound level meter. Acoustic noise measurements are made on an induction motor drive using the proposed system as per relevant international standards. These measurements are seen to match closely with those of a professional meter.
Resumo:
In the search for newer distributed phases that can be used in Ni-composite coatings, inexpensive and naturally available pumice has been identified as a potential candidate material. The composition of the pumice mineral as determined by Rietveld analysis shows the presence of corundum, quartz, mulllite, moganite and coesite phases. Pumice stone is crushed, ball-milled, dried and dispersed in a nickel sulfamate bath and Ni-pumice coatings are electrodeposited at different current densities and magnetic agitation speeds. Pumice particles are uniformly incorporated in the nickel matrix and Ni-pumice composite coatings with microhardness as high as 540 HK are obtained at the lowest applied current density. In the electrodeposited Ni-pumice coatings, the grain size of Ni increases with the applied current density. The overall intensity of texture development is slightly stronger for the Ni-pumice composite coating compared to plain Ni coating and the texture evolution is possibly not the strongest deciding factor for the enhanced properties of Ni-pumice coatings. The wear and oxidation resistances of Ni-pumice coating are commensurate with that of Ni-SiC coating electrodeposited under similar conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, especially when the objective is to improve the performance of a stochastic system However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in the literature, which include Gaussian, Cauchy, and uniform distributions, among others. This article studies a new class of kernels based on the q-Gaussian distribution, which has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with a projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.
Resumo:
A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as `coalescence' and `scrambling'. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.
Resumo:
Graphene layers have been transferred directly on to paper without any intermediate layers to yield G-paper. Resistive gas sensors have been fabricated using strips of G-paper. These sensors achieved a remarkable lower limit of detection of similar to 300 parts per trillion (ppt) for NO2, which is comparable to or better than those from other paper-based sensors. Ultraviolet exposure was found to dramatically reduce the recovery time and improve response times. G-paper sensors are also found to be robust against minor strain, which was also found to increase sensitivity. G-paper is expected to enable a simple and inexpensive low-cost flexible graphene platform
Resumo:
The effects of two major electrodeposition process conditions, electrolyte bath temperature and current density, on the microstructure and crystallographic texture of pure tin coatings on brass and, ultimately, on the extent of whisker formation have been examined. The grain size of the deposited coatings increased with increasing electrolyte bath temperature and current density, which significantly affected the dominant texture: (211) or (420) was the dominant texture at low current densities whereas, depending on deposition temperature, (200) or (220) became the dominant texture at high current densities. After deposition, coatings were subjected to different environmental conditions, for example isothermal aging (room temperature, 50A degrees C, or 150A degrees C) for up to 90 days and thermal cycling between -25A degrees C and 85A degrees C for 100 cycles, and whisker growth was studied. The Sn coatings with low Miller index planes, for example (200) and (220), and with moderate aging temperature were more prone to whiskering than coating with high Miller index planes, for example (420), and high aging temperature. A processing route involving the optimum combination of current density and deposition temperature is proposed for suppressing whisker growth.
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
This paper presents the experimental results for an attractive control scheme implementation using an 8 bit microcontroller. The power converter involved is a 3 phase full controlled bridge rectifier. A single quadrant DC drive has been realized and results have been presented for both open and closed loop implementations.