967 resultados para Convex piecewise-linear costs
Resumo:
In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.
Resumo:
A design methodology based on the Minimum Bit Error Ratio (MBER) framework is proposed for a non-regenerative Multiple-Input Multiple-Output (MIMO) relay-aided system to determine various linear parameters. We consider both the Relay-Destination (RD) as well as the Source-Relay-Destination (SRD) link design based on this MBER framework, including the pre-coder, the Amplify-and-Forward (AF) matrix and the equalizer matrix of our system. It has been shown in the previous literature that MBER based communication systems are capable of reducing the Bit-Error-Ratio (BER) compared to their Linear Minimum Mean Square Error (LMMSE) based counterparts. We design a novel relay-aided system using various signal constellations, ranging from QPSK to the general M-QAM and M-PSK constellations. Finally, we propose its sub-optimal versions for reducing the computational complexity imposed. Our simulation results demonstrate that the proposed scheme indeed achieves a significant BER reduction over the existing LMMSE scheme.
Resumo:
Time-varying linear prediction has been studied in the context of speech signals, in which the auto-regressive (AR) coefficients of the system function are modeled as a linear combination of a set of known bases. Traditionally, least squares minimization is used for the estimation of model parameters of the system. Motivated by the sparse nature of the excitation signal for voiced sounds, we explore the time-varying linear prediction modeling of speech signals using sparsity constraints. Parameter estimation is posed as a 0-norm minimization problem. The re-weighted 1-norm minimization technique is used to estimate the model parameters. We show that for sparsely excited time-varying systems, the formulation models the underlying system function better than the least squares error minimization approach. Evaluation with synthetic and real speech examples show that the estimated model parameters track the formant trajectories closer than the least squares approach.
Resumo:
Discrete polymatroids are the multi-set analogue of matroids. In this paper, we explore the connections between linear index coding and representable discrete polymatroids. The index coding problem involves a sender which generates a set of messages X = {x(1), x(2), ... x(k)} and a set of receivers R which demand messages. A receiver R is an element of R is specified by the tuple (x, H) where x. X is the message demanded by R and H subset of X \textbackslash {x} is the side information possessed by R. It is first shown that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that matroid. Multi-linear representation of a matroid can be viewed as a special case of representation of an appropriate discrete polymatroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.
Resumo:
Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.
Resumo:
The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.
Resumo:
A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Contrary to the actual nonlinear Glauber model, the linear Glauber model (LGM) is exactly solvable, although the detailed balance condition is not generally satisfied. This motivates us to address the issue of writing the transition rate () in a best possible linear form such that the mean squared error in satisfying the detailed balance condition is least. The advantage of this work is that, by studying the LGM analytically, we will be able to anticipate how the kinetic properties of an arbitrary Ising system depend on the temperature and the coupling constants. The analytical expressions for the optimal values of the parameters involved in the linear are obtained using a simple Moore-Penrose pseudoinverse matrix. This approach is quite general, in principle applicable to any system and can reproduce the exact results for one dimensional Ising system. In the continuum limit, we get a linear time-dependent Ginzburg-Landau equation from the Glauber's microscopic model of non-conservative dynamics. We analyze the critical and dynamic properties of the model, and show that most of the important results obtained in different studies can be reproduced by our new mathematical approach. We will also show in this paper that the effect of magnetic field can easily be studied within our approach; in particular, we show that the inverse of relaxation time changes quadratically with (weak) magnetic field and that the fluctuation-dissipation theorem is valid for our model.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an alternative apriori and aposteriori formulation has been derived for the discrete linear quadratic regulator (DLQR) in a manner analogous to that used in the discrete Kalman filter. It has been shown that the formulation seamlessly fits into the available formulation of the DLQR and the equivalent terms in the existing formulation and the proposed formulation have been identified. Thereafter, the significance of this alternative formulation has been interpreted in terms of the sensitivity of the controller performances to any changes in the states or to changes in the control inputs. The implications of this alternative formulation to adaptive controller tuning have also been discussed.
Resumo:
The set of all subspaces of F-q(n) is denoted by P-q(n). The subspace distance d(S)(X, Y) = dim(X) + dim(Y)-2dim(X boolean AND Y) defined on P-q(n) turns it into a natural coding space for error correction in random network coding. A subset of P-q(n) is called a code and the subspaces that belong to the code are called codewords. Motivated by classical coding theory, a linear coding structure can be imposed on a subset of P-q(n). Braun et al. conjectured that the largest cardinality of a linear code, that contains F-q(n), is 2(n). In this paper, we prove this conjecture and characterize the maximal linear codes that contain F-q(n).
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted I-alpha) were studied. Such minimizers were called forward I-alpha-projections. Here, a complementary class of minimization problems leading to the so-called reverse I-alpha-projections are studied. Reverse I-alpha-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (alpha > 1) and in constrained compression settings (alpha < 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse I-alpha-projection into a forward I-alpha-projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Resumo:
Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.