965 resultados para Continuous monitoring with Polarographic Oxygen Sensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal of complex [Li(THF)(4)][Fe(S2C2B10H10)(2)(THF)] 3 belongs to monoclinic, space group P2(1) with a = 11.964(2), b = 16.527(3), c = 12.554(3) Angstrom,beta = 108.70(3)degrees, V= 2351.3(8) Angstrom(3), Z = 2, M-r = 835.95, D-c = 1.181 g/cm(3), mu (MoKalpha) = 5.30 cm(-1), f(000) = '874, R = 0.0622 and Rw 0.1538 for 1641 observed reflections with I > 2sigma(I). The ionic complex,of 3 contains the square pyramidal anion of [Fe(S2C2B10H10)(2)(THF)](-) and the tetrahedral cation of [Li(THF)(4)](+). The iron is 5-coordinated and located in the square pyramidal configuration. The iron atom and the four sulfur atoms are almost coplanar. The Lithium atom is coordinated with four oxygen atoms of four THF molecules and located in a tetrahedral configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of electrochemistry with surface plasmon resonance (SPR) has been used to characterize the growth of polyaniline (PAn) on a gold electrode surface during potential cycling. Potential-modulated SPR characteristics of the PAn film were also revealed. The potential switch between the oxidized and reduced states of PAn can lead to a large change of SPR response due to the variation in the imaginary part of the dielectric constant of PAn film resulting from the transition of the film in conductivity. The redox transition of the PAn film during potential cycling is very profitable to the SPR measurements. Two modes of SPR measurement, SPR angular scan (R-theta) and the time evolution of the reflectivity change at a fixed angle (R-t), were displayed to study the growth process of the PAn film. The angle shift of the resonance minimum recorded at each cathodic limit of cyclic potential scanning allows for the unambiguous measurement of the film growth. During cyclic potential scanning, the R-t curve was repeatedly modulated with the direction of the potential ramp as a result of the redox switch of the PAn film, and the amplitude of potential-modulated reflectivity change was well correlated with the cyclic number. The time differential of the R-t curve permits continuous monitoring of the film growth process. These results illustrate that the combined technique is suitable for studying the electropolymerization process of a conducting polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel organotin complex, EtPhSnCl(2) . 2HOC(10)H(6)CH = NC6H1OCH3 was synthesized, and its crystal structure was determined by X-ray diffraction method. The crystal is triclinic, belonging to space group, with unit cell parameters a = 1.150 8(5) nm, b = 1. 153 1(5) gm, c = 1. 004 6 (3) nm, alpha = 94. 15 (3)degrees, beta = 115.47 (3)degrees, r = 85. 94 (4)degrees, V = 1199 7(1) nm(3), Z=2, D-c=1.68 g/cm(3), mu=13. 20 cm(-1), F(000)=618 for 4 131 reflections tions. R=0. 047, R(w)=0. 047. The ligand coordinates to tin atom via phenolic oxygen atom. The complex has a distored trigonal bipyramidal structure, the phenolic oxygen atom of the ligand and one of two chlorine atoms occupy the axial position. The distance between noncoodinated nitrogen atom with phenolic oxygen atom is 0. 257 4 nm, which indicates that the intramolecular hydrogen bond of Schiff base ligand is retained in the complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction rates of MTPP with oxygen in air are Inas than that with pure oxygen, the ratio is roughly the same as to the partial presence of imygen in air, The influences of S-ligand etbanethiol and O- litand Vc on the above Systems have also been investigated, the former makes the MP hands having more changes and the reaction rate constants becoming greater, the latter has less influence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

微电子、无线通信、自动控制和人工智能等领域的技术进步,推动了无线传感器网络的发展。无线传感器网络改变了人与自然的交互方式,是二十一世纪最具影响的IT技术之一,在军事、环境、医疗、家庭、工业和其它领域有广阔的应用前景。 路由协议是目前传感器网络研究的重要内容,协议设计与网络应用密切相关。在工业无线监测应用中,路由协议设计的主要目标是提高可靠性和降低节点能耗;而传统网络路由协议设计的首要任务是提供高质量的数据服务。这些不同导致传统网络的路由协议不能直接应用于工业过程监测网络。论文针对工业无线监测应用的需求和特点展开研究工作,主要包括以下几方面内容。 论述了工业无线传感器网络路由协议设计所面临的挑战性问题,系统地总结了已有研究成果与不足,具体分析了在工业过程监测环境下无线传感器网络的特点和路由需要重点解决的问题。 分析了工业过程监测应用对传感器网络的路由需求,并实地测试了工厂车间环境下的信道质量。 针对这些工业应用的实际需求,提出了在减少协议开销、降低协议能耗的同时提高数据传输可靠性的路由机制,以满足不同现场设备对数据路由的需求。 针对工业过程监测网络中的上行数据量大且具有周期性的特点,提出了一种基于链路质量估计的逐跳多径路由协议。该协议使数据在每一跳的转发过程中都有多条路径可以使用,在提高转发成功率的同时避免了端到端多路径机制带来的大量开销。 针对工业过程监测应用中下行数据量少且具有非周期性的特点,提出了基于分布式编址算法的主动路由协议。该协议中,传感器节点分配到下行地址之后就可以计算出下一跳转发地址,从而避免了采用基于广播转发的方式,大大减少了路由开销。同时,单播转发的下行数据不会引发“广播风暴”,减轻了对网络中周期性上行数据转发的影响。 针对手持设备所具有的移动性、数据量少和通信不频繁的特点,设计了面向移动设备的低开销按需路由协议。该协议只在手持设备有远程连接需求的时候才建立主路由,然后按需延长,避免手持设备每移动一次就要重新进行路由发现。此外,在路由发现环节利用了已经建立好的主动路由,通过单播方式转发路由发现报文,不但大幅减少了协议开销,同时也保证了所选路由的高质量。 为了测试本文提供的路由协议在工厂车间内的实际效果,构建了一个工作在2.4GHz上的验证系统。该验证系统以网络层的可靠性机制为基础,通过在链路层采用TDMA机制、FDMA机制和在传输层重传等机制的配合,达到了较高的报文传输可靠性,证明本文提出的路由协议能够满足工业过程监测应用的需要。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal treatment on H-MCM-22 and H-ZSM-5 zeolites was investigated using the electron spin resonance technique. A six-line signal (denoted as A, g = 2.048, A = 22. 15 G) was detected on H-MCM-22 after He purging at high temperatures, whose intensities increased with the treating temperature. The same signal was also found on H-ZSM-5 zeolites with different crystal sizes. The paramagnetic center was identified as a V center, namely, a hole of an electron trapped on an oxygen atom bonding to a nearby aluminum atom. These signals appeared only on a dealuminated sample or a sample concomitantly with dealumination. The formation of the hole might involve an electron transferring from the lattice oxygen to a nonframework aluminum species, and the hyperfine splitting is caused by the interaction between the electron hole locating on the p orbit of oxygen and the framework aluminum bonding with the oxygen. The signal disappeared after the sample was exposed to air or oxygen at room temperature. However, the process was reversible. A new set of signals (denoted as B, g(1) = 2.008, g(2) = 2.003, g(3) = 1.9985) was observed after oxygen adsorption on the H-MCM-22 pretreated with He at 973 K or He purging at 973 K on the H-MCM-22 pretreated with oxygen at 813 K, which was attributed to the O- species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium-doped perovskite-type membrane materials of BaCo0.4Fe0.6-xZrxO3-delta (x = 0-0.4) with mixed oxygen ion and electron conductivity were synthesized through a method of combining citric and EDTA acid complexes. The results of X-ray diffraction (XRD), oxygen temperature-programmed desorption (O-2-TPD) and hydrogen temperature-programmed reduction (H-2-TPR) showed that the incorporation of proper amount of zirconium into BaCo0.4Fe0.6O3-delta could stabilize the ideal and cubic structure of perovskite. Studies on the oxygen permeability of the as-synthesized membrane disks under air/He gradient indicated that the content of zirconium in these materials had great effects on oxygen permeation flux, activation energy for oxygen permeation and operation stability. The high oxygen permeation flux of 0.90 ml cm(-2) min(-1) at 950degreesC, the single activation energy for oxygen permeation in the range of 600-950 degreesC and the long-term operation stability at a relatively lower operational temperature of 800 degreesC under air/He gradient were achieved for the BaCo0.4Fe0.4Zr0.2O3-delta material. Meanwhile, the effect of carbon dioxide on structural stability and oxygen permeability of this material was also studied in detail, which revealed that the reversible stability could be attained for it. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen adsorption and desorption on a Pd(100) surface with a mesoscopic defect were studied by photoemission electron microscopy (PEEM). The defect surface, with an area of approximately 200 x 60 mu m(2), behaved differently from the perfect Pd(100) surface towards the adsorption of oxygen. When saturated, both surface oxygen and subsurface oxygen coexisted on the defect surface, whereas only surface oxygen was present on the Pd(100) surface. Upon heating, subsurface oxygen diffused back to the surface and desorbed with surface oxygen at the same time. The difference in oxygen adsorption ability between the defect surface and the perfect Pd(100) surface can be attributed to different structures of these two surfaces. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new FeCoMnAPO-5 with AFI structure was synthesized under hydrothermal conditions and characterized by XRD, FT-IR, X-ray fluorescence, nitrogen adsorption and SEM. The oxidation of cyclohexane with molecular oxygen was studied over the catalyst at 403 K. It show d higher activity compared to FeAPO-5, CoAPO-5 and MnAPO-5. The FeCoMnAPO-5 catalyst was recycled twice without loss of activity or selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver is well known to show peculiar catalytic activities in several oxidation reactions. In the present paper, we investigate the catalytic activity of silver catalysts toward CO-gelective oxidation in H-2. XRD, TEM, TPD, and in situ FTIR techniques were used to characterize the catalysts. The pretreatment of the catalysts was found to have great influence on their performance. The pretreatment in 02 improves the activity of the silver catalyst, whereas He pretreatment at 700 degreesC or direct hydrogen pretreatment shows an inverse effect. Silver catalysts undergo massive structural change during oxygen pretreatment at high temperatures (> 500 degreesC), and there is solid evidence for the formation of subsurface oxygen species. The existence of this silver-subsurface oxygen structure facilitates the formation of active sites on silver catalysts for CO oxidation, which are related to the size, morphology, and exposed crystal planes of the silver particles. Its formation requires a certain temperature, and a higher pretreatment temperature with oxygen is required for the silver catalyst with a smaller particle size. It is observed, for the first time, that adsorbed CO on the surface of silver particles can directly react with subsurface oxygen species at low temperatures (e.g., RT), and the surface oxygen can migrate into and refill these subsurface sites after the consumption of subsurface oxygen by the reaction with CO. This finding provides a new reaction pathway for CO oxidation on silver catalyst. (C) 2004 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data streaming model provides an attractive framework for one-pass summarization of massive data sets at a single observation point. However, in an environment where multiple data streams arrive at a set of distributed observation points, sketches must be computed remotely and then must be aggregated through a hierarchy before queries may be conducted. As a result, many sketch-based methods for the single stream case do not apply directly, as either the error introduced becomes large, or because the methods assume that the streams are non-overlapping. These limitations hinder the application of these techniques to practical problems in network traffic monitoring and aggregation in sensor networks. To address this, we develop a general framework for evaluating and enabling robust computation of duplicate-sensitive aggregate functions (e.g., SUM and QUANTILE), over data produced by distributed sources. We instantiate our approach by augmenting the Count-Min and Quantile-Digest sketches to apply in this distributed setting, and analyze their performance. We conclude with experimental evaluation to validate our analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air qualityand support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition–resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainlybased on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relativelysimple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables