962 resultados para Conformal Field-theory
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
Ce mémoire utilise des données qualitatives provenant d’entretiens semi-structurés pour examiner les ressources qu’utilisent les individus qui font face à l’insécurité alimentaire sous l’angle du capital culturel de Pierre Bourdieu. Les participants étaient choisis parmi les usagers des organismes alternatifs qui œuvrent en sécurité alimentaire à Montréal. Tous étaient en situation d’insécurité alimentaire. Des analyses inductives et déductives étaient exécutées. Seize indicateurs de la forme du capital culturel incorporée, et trois indicateurs de chacune des formes institutionnalisées et objectivées ont été trouvés à être reliés aux stratégies qu’utilisaient les répondants pour améliorer leur situation alimentaire. Cette recherche nous indique que le capital culturel individuel joue un rôle dans les stratégies utilisées, incluant la participation dans les organismes communautaires. De plus, un manque de capital approprié peut servir comme barrière à la participation dans certaines stratégies ce qui pourra avancer des réflexions sur la justesse et l’efficacité des stratégies actuelles.
Resumo:
La présente thèse se base sur les principes de la théorisation ancrée (Strauss & Corbin, 1998) afin de répondre au manque de documentation concernant les stratégies adoptées par des « agents intermédiaires » pour promouvoir l’utilisation des connaissances issues de la recherche auprès des intervenants en éducation. Le terme « agent intermédiaire » réfère aux personnes qui sont positionnées à l’interface entre les producteurs et les utilisateurs des connaissances scientifiques et qui encouragent et soutiennent les intervenants scolaires dans l’application des connaissances scientifiques dans leur pratique. L’étude s’inscrit dans le cadre d’un projet du ministère de l’Éducation, du Loisir et du Sport du Québec visant à améliorer la réussite scolaire des élèves du secondaire provenant de milieux défavorisés. Des agents intermédiaires de différents niveaux du système éducatif ayant obtenu le mandat de transférer des connaissances issues de la recherche auprès des intervenants scolaires dans les écoles visées par le projet ont été sollicités pour participer à l’étude. Une stratégie d’échantillonnage de type « boule-de-neige » (Biernacki & Waldorf, 1981; Patton, 1990) a été employée afin d’identifier les personnes reconnues par leurs pairs pour la qualité du soutien offert aux intervenants scolaires quant à l’utilisation de la recherche dans leur pratique. Seize entrevues semi-structurées ont été réalisées. L’analyse des données permet de proposer un modèle d’intervention en transfert de connaissances composé de 32 stratégies d’influence, regroupées en 6 composantes d’intervention, soit : relationnelle, cognitive, politique, facilitatrice, évaluative, de même que de soutien et de suivi continu. Les résultats suggèrent que les stratégies d’ordre relationnelle, cognitive et politique sont interdépendantes et permettent d’établir un climat favorable dans lequel les agents peuvent exercer une plus grande influence sur l’appropriation du processus de l’utilisation des connaissances des intervenants scolaire. Ils montrent en outre que la composante de soutien et de suivi continu est importante pour maintenir les changements quant à l’utilisation de la recherche dans la pratique chez les intervenants scolaires. Les implications théoriques qui découlent du modèle, ainsi que les explications des mécanismes impliqués dans les différentes composantes, sont mises en perspective tant avec la documentation scientifique en transfert de connaissances dans les secteurs de la santé et de l’éducation, qu’avec les travaux provenant de disciplines connexes (notamment la psychologie). Enfin, des pistes d’action pour la pratique sont proposées.
Resumo:
Objectives: This article further examines the phenomenon of aggression inside barrooms by relying on the “bouncer-ethnographer” methodology. The objective is to investigate variations in aggression through time and space according to the role and routine of the target in a Montreal barroom. Thus, it provides an examination of routine activity theory at the micro level: the barroom. Methods: For a period of 258 nights of observation in a Canadian barroom, bouncers completed reports on each intervention and provided specific information regarding what happened, when and where within the venue. In addition, the bouncer-ethnographer compiled field observations and interviews with bar personnel in order to identify aggression hotspots and “rush hours” for three types of actors within barrooms: (a) bouncers, (b) barmaids and (c) patrons. Findings: Three different patterns emerged for shifting hotspots of aggression depending on the target. As the night progresses, aggressive incidents between patrons, towards barmaids and towards bouncers have specific hotspots and rush hours influenced by the specific routine of the target inside the barroom. Implications: The current findings enrich those of previous work by pointing to the relevance of not only examining the environmental characteristics of the barroom, but also the role of the target of aggression. Crime opportunities follow routine activities, even within a specific location on a micro level. Routine activity theory is thus relevant in this context, because as actors in differing roles follow differing routines, as do their patterns of victimization.
Resumo:
We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we describe the structure of coupled dots as a function of the interdot distance for different electron numbers. Addition spectra, Hund's rule, and molecular-type configurations are discussed. It is shown that self-interaction corrections to the density-functional results do not play a very important role in the calculated addition spectra
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.
Resumo:
Within local-spin-density functional theory, we have investigated the ¿dissociation¿ of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of interring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.
Resumo:
We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.
Resumo:
The object of this thesis is to formulate a basic commutative difference operator theory for functions defined on a basic sequence, and a bibasic commutative difference operator theory for functions defined on a bibasic sequence of points, which can be applied to the solution of basic and bibasic difference equations. in this thesis a brief survey of the work done in this field in the classical case, as well as a review of the development of q~difference equations, q—analytic function theory, bibasic analytic function theory, bianalytic function theory, discrete pseudoanalytic function theory and finally a summary of results of this thesis
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
We report experimental studies of crystals of Mn12 molecular magnetic clusters in pulsed magnetic fields with sweep rates up to 410^3 T/s . The steps in the magnetization curve are observed at fields that are shifted with respect to the resonant field values. The shift systematically increases as the rate of the field sweep goes up. These data are consistent with the theory of the collective dipolar relaxation in molecular magnets.
Resumo:
In this paper we propose a generalization of the density functional theory. The theory leads to single-particle equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the extended Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the results are compared with the exact Hartree-Fock calculations
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.