971 resultados para Computer-generated stimuli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the concepts of intelligent buildings (IBs), and the opportunities offered by the application of computer-aided facilities management (CAFM) systems. Design/methodology/approach – In this paper definitions of IBs are investigated, particularly definitions that are embracing open standards for effective operational change, using a questionnaire survey. The survey further investigated the extension of CAFM to IBs concepts and the opportunities that such integrated systems will provide to facilities management (FM) professionals. Findings – The results showed variation in the understanding of the concept of IBs and the application of CAFM. The survey showed that 46 per cent of respondents use a CAFM system with a majority agreeing on the potential of CAFM in delivery of effective facilities. Research limitations/implications – The questionnaire survey results are limited to the views of the respondents within the context of FM in the UK. Practical implications – Following on the many definitions of an IB does not necessarily lead to technologies of equipment that conform to an open standard. This open standard and documentation of systems produced by vendors is the key to integrating CAFM with other building management systems (BMS) and further harnessing the application of CAFM for IBs. Originality/value – The paper gives experience-based suggestions for both demand and supply sides of the service procurement to gain the feasible benefits and avoid the currently hindering obstacles, as the paper provides insight to the current and future tools for the mobile aspects of FM. The findings are relevant for service providers and operators as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Inadvertent drilling on the ossicular chain is one of the causes of sensorineural hearing loss (HL) that may follow tympanomastoid surgery. A high-frequency HL is most frequently observed. It is speculated that the HL is a result of vibration of the ossicular chain resembling acoustic noise trauma. It is generally considered that using a large cutting burr is more likely to cause damage than a small diamond burr. Aim: The aim was to investigate the equivalent noise level and its frequency characteristics generated by drilling onto the short process of the incus in fresh human temporal bones. Methods and Materials: Five fresh cadaveric temporal bones were used. Stapes displacement was measured using laser Doppler vibrometry during short drilling episodes. Diamond. and cutting burrs of different diameters were used. The effect of the drilling on stapes footplate displacement was compared with that generated by an acoustic signal. The equivalent noise level (dB sound pressure level equivalent [SPL eq]) was thus calculated. Results: The equivalent noise levels generated ranged from 93 to 125 dB SPL eq. For a 1-mm cutting burr, the highest equivalent noise level was 108 dB SPL eq, whereas a 2.3-mm cutting burr produced a maximal level of 125 dB SPL eq. Diamond burrs generated less noise than their cutting counterparts, with a 2.3-mm diamond burr producing a highest equivalent noise level of 102, dB SPL eq. The energy of the noise increased at the higher end of the frequency spectrum, with a 2.3-mm cutting burr producing a noise level of 105 dB SPL eq at 1 kHz and 125 dB SPL eq at 8 kHz. In contrast, the same sized diamond burr produced 96 dB SPL eq at 1 kHz and 99 dB at 8 kHz. Conclusion:This study suggests that drilling on the ossicular chain can produce vibratory force that is analogous with noise levels known to produce acoustic trauma. For the same type of burr, the larger the diameter, the greater the vibratory force, and for the same size of burr, the cutting burr creates more vibratory force than the diamond burr. The cutting burr produces greater high-frequency than lower-frequency vibratory energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recovery of lactoferrin and lactoperoxidase from sweet whey was studied using colloidal gas aphrons (CGAs), which are surfactant-stabilized microbubbles (10-100 mum). CGAs are generated by intense stirring (8000 rpm for 10 min) of the anionic surfactant AOT (sodium bis-2-ethylhexyl sulfosuccinate). A volume of CGAs (10-30 mL) is mixed with a given volume of whey (1 - 10 mL), and the mixture is allowed to separate into two phases: the aphron (top) phase and the liquid (bottom) phase. Each of the phases is analyzed by SDS-PAGE and surfactant colorimetric assay. A statistical experimental design has been developed to assess the effect of different process parameters including pH, ionic strength, the concentration of surfactant in the CGAs generating solution, the volume of CGAs and the volume of whey on separation efficiency. As expected pH, ionic strength and the volume of whey (i.e. the amount of total protein in the starting material) are the main factors influencing the partitioning of the Lf(.)Lp fraction into the aphron phase. Moreover, it has been demonstrated that best separation performance was achieved at pH = 4 and ionic strength = 0.1 mol/L i.e., with conditions favoring electrostatic interactions between target proteins and CGAs (recovery was 90% and the concentration of lactoferrin and lactoperoxidase in the aphron phase was 25 times higher than that in the liquid phase), whereas conditions favoring hydrophobic interactions (pH close to pI and high ionic strength) led to lower performance. However, under these conditions, as confirmed by zeta potential measurements, the adsorption of both target proteins and contaminant proteins is favored. Thus, low selectivity is achieved at all of the studied conditions. These results confirm the initial hypothesis that CGAs act as ion exchangers and that the selectivity of the process can be manipulated by changing main operating parameters such as type of surfactant, pH and ionic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once unit-cell dimensions have been determined from a powder diffraction data set and therefore the crystal system is known (e.g. orthorhombic), the method presented by Markvardsen, David, Johnson & Shankland [Acta Cryst. (2001), A57, 47-54] can be used to generate a table ranking the extinction symbols of the given crystal system according to probability. Markvardsen et al. tested a computer program (ExtSym) implementing the method against Pawley refinement outputs generated using the TF12LS program [David, Ibberson & Matthewman (1992). Report RAL-92-032. Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK]. Here, it is shown that ExtSym can be used successfully with many well known powder diffraction analysis packages, namely DASH [David, Shankland, van de Streek, Pidcock, Motherwell & Cole (2006). J. Appl. Cryst. 39, 910-915], FullProf [Rodriguez-Carvajal (1993). Physica B, 192, 55-69], GSAS [Larson & Von Dreele (1994). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA], PRODD [Wright (2004). Z. Kristallogr. 219, 1-11] and TOPAS [Coelho (2003). Bruker AXS GmbH, Karlsruhe, Germany]. In addition, a precise description of the optimal input for ExtSym is given to enable other software packages to interface with ExtSym and to allow the improvement/modification of existing interfacing scripts. ExtSym takes as input the powder data in the form of integrated intensities and error estimates for these intensities. The output returned by ExtSym is demonstrated to be strongly dependent on the accuracy of these error estimates and the reason for this is explained. ExtSym is tested against a wide range of data sets, confirming the algorithm to be very successful at ranking the published extinction symbol as the most likely. (C) 2008 International Union of Crystallography Printed in Singapore - all rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated insula and anterior cingulate cortices in the empathic response to another's pain. However, virtually nothing is known about the impact of the voluntary generation of compassion on this network. To investigate these questions we assessed brain activity using fMRI while novice and expert meditation practitioners generated a loving-kindness-compassion meditation state. To probe affective reactivity, we presented emotional and neutral sounds during the meditation and comparison periods. Our main hypothesis was that the concern for others cultivated during this form of meditation enhances affective processing, in particular in response to sounds of distress, and that this response to emotional sounds is modulated by the degree of meditation training. The presentation of the emotional sounds was associated with increased pupil diameter and activation of limbic regions (insula and cingulate cortices) during meditation (versus rest). During meditation, activation in insula was greater during presentation of negative sounds than positive or neutral sounds in expert than it was in novice meditators. The strength of activation in insula was also associated with self-reported intensity of the meditation for both groups. These results support the role of the limbic circuitry in emotion sharing. The comparison between meditation vs. rest states between experts and novices also showed increased activation in amygdala, right temporo-parietal junction (TPJ), and right posterior superior temporal sulcus (pSTS) in response to all sounds, suggesting, greater detection of the emotional sounds, and enhanced mentation in response to emotional human vocalizations for experts than novices during meditation. Together these data indicate that the mental expertise to cultivate positive emotion alters the activation of circuitries previously linked to empathy and theory of mind in response to emotional stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space applications are challenged by the reliability of parallel computing systems (FPGAs) employed in space crafts due to Single-Event Upsets. The work reported in this paper aims to achieve self-managing systems which are reliable for space applications by applying autonomic computing constructs to parallel computing systems. A novel technique, 'Swarm-Array Computing' inspired by swarm robotics, and built on the foundations of autonomic and parallel computing is proposed as a path to achieve autonomy. The constitution of swarm-array computing comprising for constituents, namely the computing system, the problem / task, the swarm and the landscape is considered. Three approaches that bind these constituents together are proposed. The feasibility of one among the three proposed approaches is validated on the SeSAm multi-agent simulator and landscapes representing the computing space and problem are generated using the MATLAB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an overview of some of the latest developments in the field of cerebral cortex to computer interfacing (CCCI) is given. This is posed in the more general context of Brain-Computer Interfaces in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bidirectionally with technology and the internet. A view is taken as to the prospects for the future for CCCI, in terms of its broad therapeutic role.