936 resultados para Computer-generated 3D imaging
Resumo:
The work described in this thesis is directed towards the reduction of tyre/road interface noise and embodies a study of the factors involved in its generation. These factors comprise: (a) materials and construction of tyres and road surfaces (b) the spectral distribution of the noise. The importance of this work has become greater with reduction in engine noise. A review of the literature shows what has been achieved so far, and stresses the importance of maintaining other desirable tyre properties such as adhesion in wet conditions. The work has involved an analysis of mechanical factors in tyre construction and the behaviour of road surfaces. Measurements on noise have been carried out under practical conditions and also on replica surfaces in the laboratory, and in addition tests of wet road adhesion have been carried out with a variety of road surfaces. Consideration has been given to the psychological effects of the spectral distribution of noise. A major part of the work under-taken has been the development of a computer program, the results of which have made it possible to design a tyre tread block pattern to give an optimum spectral distribution. Sample tyres built to this design have been subjected to noise measurements and these have been shown to agree closely with the theoretical prediction and other properties of this tyre have proved to be satisfactory.
Resumo:
Conventional methods of form-roll design and manufacture for Cold Roll-Forming of thin-walled metal sections have been entirely manual, time consuming and prone to errors, resulting in inefficiency and high production costs. With the use of computers, lead time can be significantly improved, particularly for those aspects involving routine but tedious human decisions and actions. This thesis describes the development of computer aided tools for producing form-roll designs for NC manufacture in the CAD/CAM environment. The work was undertaken to modernise the existing activity of a company manufacturing thin-walled sections. The investigated areas of the activity, including the design and drafting of the finished section, the flower patterns, the 10 to 1 templates, and the rolls complete with pinch-difference surfaces, side-rolls and extension-contours, have been successfully computerised by software development . Data generated by the developed software can be further processed for roll manufacturing using NC lathes. The software has been specially designed for portability to facilitate its implementation on different computers. The Opening-Radii method of forming was introduced as a subsitute to the conventional method for better forming. Most of the essential aspects in roll design have been successfully incorporated in the software. With computerisation, extensive standardisation in existing roll design practices and the use of more reliable and scientifically-based methods have been achieved. Satisfactory and beneficial results have also been obtained by the company in using the software through a terminal linked to the University by a GPO line. Both lead time and productivity in roll design and manufacture have been significantly improved. It is therefore concluded that computerisation in the design of form-rolls for automation by software development is viable. The work also demonstrated the promising nature of the CAD/CAM approach.
Resumo:
Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
Improvements in imaging chips and computer processing power have brought major advances in imaging of the anterior eye. Digitally captured images can be visualised immediately and can be stored and retrieved easily. Anterior ocular imaging techniques using slitlamp biomicroscopy, corneal topography, confocal microscopy, optical coherence tomography (OCT), ultrasonic biomicroscopy, computerised tomography (CT) and magnetic resonance imaging (MRI) are reviewed. Conventional photographic imaging can be used to quantify corneal topography, corneal thickness and transparency, anterior chamber depth and lateral angle and crystalline lens position, curvature, thickness and transparency. Additionally, the effects of tumours, foreign bodies and trauma can be localised, the corneal layers can be examined and the tear film thickness assessed. © 2006 The Authors.
Resumo:
Swallowable capsule endoscopy is used for non-invasive diagnosis of some gastrointestinal (GI) organs. However, control over the position of the capsule is a major unresolved issue. This study presents a design for steering the capsule based on magnetic levitation. The levitation is stabilized with the aid of a computer-aided feedback control system and diamagnetism. Peristaltic and gravitational forces to be overcome were calculated. A levitation setup was built to analyze the feasibility of using Hall Effect sensors to locate the in- vivo capsule. CAD software Maxwell 3D (Ansoft, Pittsburgh, PA) was used to determine the dimensions of the resistive electromagnets required for levitation and the feasibility of building them was examined. Comparison based on design complexity was made between positioning the patient supinely and upright.
Resumo:
Евгений Николов, Димитрина Полимирова - Докладът представя текущото състояние на “облачните изчисления” и “облачните информационни атаки” в светлината на компютърната вирусология и информационната сигурност. Обсъдени са категориите “облачни възможни информационни атаки” и “облачни успешни информационни атаки”. Коментирана е архитектурата на “облачните изчисления” и основните компоненти, които изграждат тяхната инфраструктура, съответно “клиенти” (“clients”), „центрове за съхранение на данни“ (“datacenters”) и „разпределени сървъри“ (“dirstributed servers”). Коментирани са и услугите, които се предлагат от “облачните изчисления” – SaaS, HaaS и PaaS. Посочени са предимствата и недостатъците на компонентите и услугите по отношение на “облачните информационни атаки”. Направен е анализ на текущото състояние на “облачните информационни атаки” на територията на България, Балканския полуостров и Югоизточна Европа по отношение на компонентите и на услугите. Резултатите са представени под формата на 3D графични обекти. На края са направени съответните изводи и препоръки под формата на заключение.
Resumo:
The report presents the film 10th century. The South of the Royal Palace in Great Preslav. It consists of two parts – 10th century. The Royal Palace in Great Prelsav. The Square with the Pinnacle and The Ruler’s Lodgings. 3D and virtual reconstructions of an architectural ensemble – part of the Preslav Royal Court unearthed during archaeological researches are used in the film. 3D documentaries have already gained popularity around the world and are well received by both scholars and the public at large. One of the distinguished tourist destinations in Bulgaria is Great Preslav – capital of the mediaeval Bulgarian state and a significant cultural center of the European Southeast in 9th–10th centuries, too. The first part of the film is created with the financial support of America for Bulgaria Foundation and the second – with the funding of Bulgarian National Science Fund at the Ministry of Education, Youth and Science. A team of almost 20 members worked on the film, including computer specialists, professional actors, and translators in the four main European languages – English, German, French and Russian, Trima Sound Recording Studio. In the first part of the 3D film are shown a segment of the Royal Palace, the square with the water pinnacle and the adjacent buildings – an important structural element of the town-planning of the Preslav Court center in the 10th century. In the second part the accent is the southern part of the Royal Palace in Great Preslav, where the personal residence of the Preslav ruler’s dynasty is situated. The work on the virtual reconstruction was done by Virtual Archaeology club at the Mathematical School, Shumen. Due to the efforts of its members it is now clear how the square in front of the southern gate looked like.
Resumo:
The object of this paper is presenting the University of Economics – Varna, using a 3D model with 3Ds MAX. Created in 1920, May 14, University of Economics - Varna is a cultural institution with a place and style of its own. With the emergence of the three-dimensional modeling we entered a new stage of the evolution of computer graphics. The main target is to preserve the historical vision, to demonstrate forward-thinking and using of future-oriented approaches.
Resumo:
This paper presents a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis of Torsello and Hancock [1]. In order to cope with the exponential growth of the number of voxels, we compute a first coarse discretization of the mesh which is iteratively refined until a desired resolution is achieved. The refinement criterion relies on the analysis of the momentum field, where only the voxels with a suitable value of the divergence are exploded to a lower level of the hierarchy. In order to compensate for the discretization errors incurred at the coarser levels, a dilation procedure is added at the end of each iteration. Finally we design a simple alignment procedure to correct the displacement of the extracted skeleton with respect to the true underlying medial surface. We evaluate the proposed approach with an extensive series of qualitative and quantitative experiments. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.
Resumo:
Biometrics is afield of study which pursues the association of a person's identity with his/her physiological or behavioral characteristics.^ As one aspect of biometrics, face recognition has attracted special attention because it is a natural and noninvasive means to identify individuals. Most of the previous studies in face recognition are based on two-dimensional (2D) intensity images. Face recognition based on 2D intensity images, however, is sensitive to environment illumination and subject orientation changes, affecting the recognition results. With the development of three-dimensional (3D) scanners, 3D face recognition is being explored as an alternative to the traditional 2D methods for face recognition.^ This dissertation proposes a method in which the expression and the identity of a face are determined in an integrated fashion from 3D scans. In this framework, there is a front end expression recognition module which sorts the incoming 3D face according to the expression detected in the 3D scans. Then, scans with neutral expressions are processed by a corresponding 3D neutral face recognition module. Alternatively, if a scan displays a non-neutral expression, e.g., a smiling expression, it will be routed to an appropriate specialized recognition module for smiling face recognition.^ The expression recognition method proposed in this dissertation is innovative in that it uses information from 3D scans to perform the classification task. A smiling face recognition module was developed, based on the statistical modeling of the variance between faces with neutral expression and faces with a smiling expression.^ The proposed expression and face recognition framework was tested with a database containing 120 3D scans from 30 subjects (Half are neutral faces and half are smiling faces). It is shown that the proposed framework achieves a recognition rate 10% higher than attempting the identification with only the neutral face recognition module.^
Resumo:
The premise of this dissertation is to create a highly integrated platform that combines the most current recording technologies for brain research through the development of new algorithms for three-dimensional (3D) functional mapping and 3D source localization. The recording modalities that were integrated include: Electroencephalography (EEG), Optical Topographic Maps (OTM), Magnetic Resonance Imaging (MRI), and Diffusion Tensor Imaging (DTI). This work can be divided into two parts: The first part involves the integration of OTM with MRI, where the topographic maps are mapped to both the skull and cortical surface of the brain. This integration process is made possible through the development of new algorithms that determine the probes location on the MRI head model and warping the 2D topographic maps onto the 3D MRI head/brain model. Dynamic changes of the brain activation can be visualized on the MRI head model through a graphical user interface. The second part of this research involves augmenting a fiber tracking system, by adding the ability to integrate the source localization results generated by commercial software named Curry. This task involved registering the EEG electrodes and the dipole results to the MRI data. Such Integration will allow the visualization of fiber tracts, along with the source of the EEG, in a 3D transparent brain structure. The research findings of this dissertation were tested and validated through the participation of patients from Miami Children Hospital (MCH). Such an integrated platform presented to the medical professionals in the form of a user-friendly graphical interface is viewed as a major contribution of this dissertation. It should be emphasized that there are two main aspects to this research endeavor: (1) if a dipole could be situated in time at its different positions, its trajectory may reveal additional information on the extent and nature of the brain malfunction; (2) situating such a dipole trajectory with respect to the fiber tracks could ensure the preservation of these fiber tracks (axons) during surgical interventions, preserving as a consequence these parts of the brain that are responsible for information transmission.
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.