930 resultados para Composites carbon fiber race car mainplane wing Dallara design CAD lamination lay-up


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the fabrication and integration of active microstructures based on composites of 3D carbon nanotube (CNT) frameworks and hydrogels. The alignment of the CNTs within the microstructures converts the isotropic expansion of the gel into a directed anisotropic motion. Actuation by a moisture-responsive gel is observed by changing the ambient humidity, and is predicted by a finite element model of the composite system. These shape changes are rapid and can be transduced electrically within a microfluidic channel, by measuring the resistance change across a CNT microstructure during expansion of the gel. Our results suggest that combinations of gels with aligned CNTs can be a platform for directing the actuation of gels and measuring their response to stimuli. © 2011 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants as well as other biological organisms achieve directed movements by fibres that constraint and direct the isotropic expansion of a matrix material. In order to mimic these actuators, complex arrangements of rigid fibres must be achieved, which is challenging, especially at small scales. In this paper, a new method to organize carbon nanotubes (CNTs) into complex shapes is employed to create a framework for hydrogel infiltration. These CNT frameworks can be realized as iris, needle and bridge architectures, and after hydrogel infiltration, they show directed actuation in response to water uptake. Finally, we show how the latter can be employed as a novel hygroscopic sensor. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter 4 m, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties. © 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive modelocking using carbon nanotubes is achieved in a linear cavity waveguide laser realized by ultrafast laser inscription in ytterbium doped bismuthate glass. The pulses observed under a Q-switched envelope have a repetition rate of 1.5 GHz. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © OSA 2012.