969 resultados para Complex Processes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we describe several methods for the discretization of the differintegral operator sa, where α = u + jv is a complex value. The concept of the conjugated-order differintegral is also introduced, which enables the use of complex-order differintegrals while still producing real-valued time responses and transfer functions. The performance of the resulting approximations is analysed in both the time and frequency domains. Several results are presented that demonstrate its utility in control system design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photo-absorption cross section of trifluoromethyl sulphur pentafluoride, SF5CF3 has been measured using synchrotron radiation in the range of 4–11 eV (310 nm > l > 110 nm) and comparison made with electron energy loss spectroscopy (EELS). The measured VUV cross sections are used to derive the photolysis rate of SF5CF3 in the terrestrial atmosphere. It is estimated that the lifetime for this molecule is the order of a 1000 years and the calculated global warming potential (GWP) is found to be between 17000 and 18100, making it one of the most potent global warming gases in the terrestrial atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a contribution to the e-Framework, arguably the most prominent e-learning framework today, and consists of the definition of a service for the automatic evaluation of programming exercises. This evaluation domain differs from trivial evaluations modelled by languages such as the IMS Question & Test Interoperability (QTI) specification. Complex evaluation domains justify the development of specialized evaluators that participate in several business processes. These business processes can combine other type of systems such as Programming Contest Management Systems, Learning Management Systems, Integrated Development Environments and Learning Object Repositories where programming exercises are stored as Learning Objects. This contribution describes the implementation approaches used, more precisely, behaviours & requests, use & interactions, applicable standards, interface definition and usage scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this work was the development of procedures for the simulation of atmospheric ows over complex terrain, using OpenFOAM. For this aim, tools and procedures were developed apart from this code for the preprocessing and data extraction, which were thereafter applied in the simulation of a real case. For the generation of the computational domain, a systematic method able to translate the terrain elevation model to a native OpenFOAM format (blockMeshDict) was developed. The outcome was a structured mesh, in which the user has the ability to de ne the number of control volumes and its dimensions. With this procedure, the di culties of case set up and the high computation computational e ort reported in literature associated to the use of snappyHexMesh, the OpenFOAM resource explored until then for the accomplishment of this task, were considered to be overwhelmed. Developed procedures for the generation of boundary conditions allowed for the automatic creation of idealized inlet vertical pro les, de nition of wall functions boundary conditions and the calculation of internal eld rst guesses for the iterative solution process, having as input experimental data supplied by the user. The applicability of the generated boundary conditions was limited to the simulation of turbulent, steady-state, incompressible and neutrally strati ed atmospheric ows, always recurring to RaNS (Reynolds-averaged Navier-Stokes) models. For the modelling of terrain roughness, the developed procedure allowed to the user the de nition of idealized conditions, like an uniform aerodynamic roughness length or making its value variable as a function of topography characteristic values, or the using of real site data, and it was complemented by the development of techniques for the visual inspection of generated roughness maps. The absence and the non inclusion of a forest canopy model limited the applicability of this procedure to low aerodynamic roughness lengths. The developed tools and procedures were then applied in the simulation of a neutrally strati ed atmospheric ow over the Askervein hill. In the performed simulations was evaluated the solution sensibility to di erent convection schemes, mesh dimensions, ground roughness and formulations of the k - ε and k - ω models. When compared to experimental data, calculated values showed a good agreement of speed-up in hill top and lee side, with a relative error of less than 10% at a height of 10 m above ground level. Turbulent kinetic energy was considered to be well simulated in the hill windward and hill top, and grossly predicted in the lee side, where a zone of ow separation was also identi ed. Despite the need of more work to evaluate the importance of the downstream recirculation zone in the quality of gathered results, the agreement between the calculated and experimental values and the OpenFOAM sensibility to the tested parameters were considered to be generally in line with the simulations presented in the reviewed bibliographic sources.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years emerged several initiatives promoted by educational organizations to adapt Service Oriented Architectures (SOA) to e-learning. These initiatives commonly named eLearning Frameworks share a common goal: to create flexible learning environments by integrating heterogeneous systems already available in many educational institutions. However, these frameworks were designed for integration of systems participating in business like processes rather than on complex pedagogical processes as those related to automatic evaluation. Consequently, their knowledge bases lack some fundamental components that are needed to model pedagogical processes. The objective of the research described in this paper is to study the applicability of eLearning frameworks for modelling a network of heterogeneous eLearning systems, using the automatic evaluation of programming exercises as a case study. The paper surveys the existing eLearning frameworks to justify the selection of the e-Framework. This framework is described in detail and identified the necessary components missing from its knowledge base, more precisely, a service genre, expression and usage model for an evaluation service. The extensibility of the framework is tested with the definition of this service. A concrete model for evaluation of programming exercises is presented as a validation of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one-factor-at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and filler replacements for polymer mortar, with significant gain of mechanical properties with regard to non-modified polymer mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Doutoramento em Matemática: Processos Estocásticos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Sociologia da Comunicação