1000 resultados para Compósitos poliméricos. Fibras de casca de piaçava. Fogão solar
Resumo:
Isolate microorganisms that fermenting xylose to ethanol is a challenge to expand production of biofuels from lignocellulosic materials. For this work was tested fermentation of xylose by yeast strains isolated from grape skins (Vitis spp) in order to ethanol produce. The yeasts were grown in submerged fermentation with xylose as a carbohydrate source. Aliquots were taken every 24 hours to measure cell growth, sugar consumption and ethanol production. The yeast had an production ethanol average of 2.5 g / L and yield (Ye / s) 0.12 g / g, showing that they have the ability to produce ethanol from xylose.
Resumo:
Due to growing concerns for reducing environmental damage caused by the use of non-renewable raw materials, there is a growing demand for research related to aggregate technology with environmental preservation. Thus, the use of non-renewable materials and less aggressive materials has been gaining attention. About composite materials, the exchange of synthetic fibers by natural fibers, especially vegetable fiber as reinforcement, has been increasing, due to its physical-chemical properties such as mechanical strength, nontoxic, low cost, low density, processing flexibility, non-abrasive to the process equipment, requiring simple surface treatments, etc. This objective was to process composites reinforced with long fibers of sapegrass in epoxy matrix and characterize the composites through mechanical tests. Three groups of composites were prepared according to the treatment received by the reinforcement: without treatment, alkali treatment at concentration of 5% w/v and alkali treatment at 10% w/v concentration. The materials were analyzed by tensile and flexural, and tests also optical microscopy and scanning electron microscopy (SEM). The results were statistically analyzed. As the main result, the alkali treatment of 5% in the sapegrass fibers increases the tensile and flexural strength, as a consequence of the improve adhesion between matrix and reinforcement
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Química - IQ
Resumo:
The aim of this study was to evaluate the influence of specimen size, in comparison with the ISO Standard, on the three point flexural strength of resin composite restorative materials Filtek Supreme and Filtek Z-250. Forty specimens were fabricated for each material with the following length, width and thickness measurements (n = 10): 1) 20 × 2 × 2 mm (ISO 4049); 2) 10 × 2 × 1 mm; 3) 10 × 1 × 1 mm; 4) 8 × 0.8 × 0.8 mm. The composites were inserted in a single increment into two-piece metal device and light-polymerized. The specimens were dry stored at 37 ± 1 °C and protected from light for 7 days. After this period, flexural strength was measured by three-point flexure test using MTS 810 equipment, with a load cell of 10 kN at a speed of 0.5 mm/min. For the evaluated sizes, the results showed significant variability (p = 0.00) with values when compared with the ISO Standard (116.700 MPa), being statistically higher for the test specimens measuring 10 × 1 × 1 mm (142.530 MPa), similar for those of 10 × 2 × 1 mm (115.815 MPa) and lower for those of 8 × 0.8 × 0.8 mm (86.650 MPa). There was statistical equality (p = 0.08) for the studied composites (Filtek Supreme, 125.270 MPa; Filtek Z-250, 108.130 MPa). Specimens measuring 10 × 2 × 1 mm provided flexural strength values equivalent to those obtained in the sizes recommended by the ISO 4049 standard, with lower consumption of material, energy and time.
Resumo:
Esse artigo tem como objetivo demonstrar o restabelecimento estético do sorriso obtido por meio da associação de facetas diretas e fibra de reforço. As fibras de reforço são utilizadas como alternativa para substituição de elementos dentários perdidos e possuem indicações precisas, sendo empregadas em diversas especialidades da Odontologia, devido à sua capacidade de aumentar a resistência à tração dos compósitos, o que aumenta a resistência à compressão das fibras. Para o completo restabelecimento do sorriso, muitas vezes é necessário reanatomizar os dentes adjacentes, considerando as condições em que esses se apresentam. Sendo assim, o profissional deve ter conhecimento para aplicação correta da técnica e restabelecimento da estética ao paciente.
Resumo:
Advanced Layering composite resins can be facilitated by a technique called "Lingual Matrix", where a guide is made of elastomer by molding a previously waxed tooth or sculped in an intraoral test drive restoration. This technique has many advantages to sophisticated layering, facilitation stratification, anatomic construcrion and the stages of finishing and polishing. However, in some clinical situations, the unfolding of the steps to obtains this matrix can be time consuming or even infeasible. To facilitate the achievement of this apparatus, a technique was idealized allowing significant reducrion in clinical time. This matrix, called the "BRB Matrix" is widly discussed in a didactic and clinical manner in this article, presenting its advantages in clinical cases where it is imperative to use a guide for conduction a controlled layering. The simplicity of this approach, as well as reduced clinical time and finacial costs turn it feasible in an everyday clinical practice.