1000 resultados para Coffee crop classification
Resumo:
O objetivo do presente trabalho foi avaliar os efeitos do ácido giberélico, do bioestimulante Crop Set e do anelamento sobre o aumento do tamanho de bagas e a produtividade da uva 'Thompson Seedless' no Vale do São Francisco. O experimento foi conduzido durante dois ciclos de produção (2001 e 2002), no Campo Experimental de Bebedouro, pertencente à Embrapa Semi-Árido, em Petrolina-PE. Utilizou-se do delineamento experimental de blocos ao acaso, com 12 tratamentos e 3 repetições. Os tratamentos corresponderam à aplicação de ácido giberélico em cinco fases de desenvolvimento da videira, nas doses de 10 + 15 + 15 +50 + 50 mg.L-1, do bioestimulante Crop Set em duas doses de 0,1 e 0,2% e do anelamento no caule, isolados e combinados entre si. Os tratamentos combinados de anelamento + ácido giberélico e anelamento + ácido giberélico + Crop Set destacaram-se como aqueles que promoveram os maiores peso e tamanho de cachos e de bagas, com diferenças significativas em relação à testemunha. Entretanto, o anelamento não cicatrizou completamente, causando a morte de plantas, recomendando-se cautela na sua realização. Apesar de não se observar efeito significativo dos tratamentos sobre a produtividade, pode-se notar um aumento de 63% para o tratamento anelamento + ácido giberélico em relação ao ciclo de produção de 2001.
Resumo:
El objetivo de la presente investigación fue analizar la correspondencia entre los resultados de una evaluación de tierras con la distribución real de los cultivos. Para ello la aptitud biofísica de las tierras se comparó con diferentes tipologías de frecuencia de ocurrencia de los cultivos y rotaciones derivadas de mapas de cultivos multitemporales. La investigación fue llevada a cabo en el distrito de riego de Flumen (33.000 ha), localizado en el valle del Ebro (NE España). La evaluación de tierras se basó en una cartografía de suelos 1:100.000, según el esquema FAO, para los principales cultivos presentes en el área de estudio (alfalfa, cereales de invierno, maíz, arroz y girasol). Se utilizaron tres mapas de frecuencia de cultivos y un mapa de rotaciones, derivado de una serie temporal de imágenes Landsat TM y ETM+ del periodo 1993-2000, y se compararon con los mapas de aptitud de tierras para los diferentes cultivos. Se analizó estadísticamente (Pearson χ2, Cramer V, Gamma y Somers D) la relación entre los dos tipos de variables. Los resultados muestran la existencia de una relación significativa (P=0,001) entre la localización de los cultivos y la idoneidad de las tierras, excepto de cultivos oportunistas como el girasol, muy influenciado por las subvenciones en el periodo estudiado. Las rotaciones basadas en la alfalfa muestran los mayores porcentajes (52%) de ocupación en las tierras más aptas para la agricultura en el área de estudio. El presente enfoque multitemporal de análisis de la información ofrece una visión más real que la comparación entre un mapa de evaluación de tierras y un mapa de cultivos de una fecha determinada, cuando se valora el grado de acuerdo entre las recomendaciones sobre la aptitud de las tierras y los cultivos realmente cultivados por los agricultores.
Resumo:
En este trabajo se investiga la coherencia y confiabilidad de estimaciones de funciones de densidad de probabilidad (FDP) subjetivas de rendimientos de cultivos realizadas por un amplio grupo de agricultores. Se utilizaron tres técnicas de elicitación diferentes: el método de estimación de FDP en dos pasos, la distribución Triangular y la distribución Beta. Los sujetos entrevistados ofrecieron estimaciones para los valores puntuales de rendimientos de cultivos (medio, máximo posible, más frecuente y mínimo posible) y para las FDP basadas en la estimación de intervalos. Para evaluar la persistencia, se utilizaron los conceptos de persistencia temporal y persistencia metodológica. Los resultados son interesantes para juzgar la adecuación de las técnicas de estimación de probabilidades subjetivas a los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
En este trabajo se investiga la persistencia de las estimaciones puntuales subjetivas de rendimientos en cultivos anua- les realizadas por un amplio grupo de agricultores. La persistencia en el tiempo es una condición necesaria para la co- herencia y la confiabilidad de las estimaciones subjetivas de variables aleatorias. Los sujetos entrevistados estimaron valores puntuales de rendimientos de cultivos anuales (rendimientos medio, mayor, mínimo y más frecuente). Se han encontrado diferencias relativas poco importantes en todas las variables, excepto en los rendimientos mínimos, donde existe una alta dispersión. Los resultados son interesantes para estimar la adecuación de las técnicas de estimación de probabilidades subjetivas para ser utilizadas en los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
Les plantes transgèniques són una part integral de l’agricultura contemporània. Durant l’any 2006 més de noranta milions d’hectàrees de plantes transgèniques van ser cultivades en vint-i-un països. Des de la comercialització de la primera planta transgènica el 1996 els nivells d’adopció d’aquests cultius han augmentat anualment amb percentatges de dos dígits. El desenvolupament i la comercialització de les plantes transgèniques van lligats estretament al comerç mundial, a la globalització, a la disponibilitat de suficient menjar, a la protecció del medi ambient i del consumidor i a la propietat intel·lectual. En aquest article exposem els avenços més recents i les tendències actuals en el desenvolupament dels cultius transgènics i de la seva utilització. També ens fem ressò d’alguns assumptes no científics que s’han de solucionar abans que aquests cultius arribin al màxim del seu potencial, proporcionant una agricultura més sostenible i ecològica. Finalment, ressaltarem la importància de com les plantes transgèniques poden contribuir en la disponibilitat de menjar i en la millora de la pobresa en els països en vies de desenvolupament.
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.
Resumo:
Background: Parallel T-Coffee (PTC) was the first parallel implementation of the T-Coffee multiple sequence alignment tool. It is based on MPI and RMA mechanisms. Its purpose is to reduce the execution time of the large-scale sequence alignments. It can be run on distributed memory clusters allowing users to align data sets consisting of hundreds of proteins within a reasonable time. However, most of the potential users of this tool are not familiar with the use of grids or supercomputers. Results: In this paper we show how PTC can be easily deployed and controlled on a super computer architecture using a web portal developed using Rapid. Rapid is a tool for efficiently generating standardized portlets for a wide range of applications and the approach described here is generic enough to be applied to other applications, or to deploy PTC on different HPC environments. Conclusions: The PTC portal allows users to upload a large number of sequences to be aligned by the parallel version of TC that cannot be aligned by a single machine due to memory and execution time constraints. The web portal provides a user-friendly solution.
Resumo:
The first phytopathogenic bacterium with its DNA entirely sequenced is being detected and isolated from different host plants in several geographic regions. Although it causes diseases in cultures of economic importance, such as citrus, coffee, and grapevine little is known about the genetic relationships among different strains. Actually, all strains are grouped as a single species, Xylella fastidiosa, despite colonizing different hosts, developing symptoms, and different physiological and microbiological observed conditions. The existence of genetic diversity among X. fastidiosa strains was detected by different methodological techniques, since cultural to molecular methods. However, little is know about the phylogenetic relationships developed by Brazilian strains obtained from coffee and citrus plants. In order to evaluate it, fAFLP markers were used to verify genetic diversity and phylogenetic relationships developed by Brazilian and strange strains. fAFLP is an efficient technique, with high reproducibility that is currently used for bacterial typing and classification. The obtained results showed that Brazilian strains present genetic diversity and that the strains from this study were grouped distinctly according host and geographical origin like citrus-coffee, temecula-grapevine-mulberry and plum-elm.
Resumo:
This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat.
Resumo:
El presente trabajo pretende la caracterización de la distribución espacial típica del cultivo de arroz en regadíos del valle del Ebro, donde la presencia del cultivo está ligada a la existencia de suelos salino-sódicos. Esta caracterización ha de permitir identificar las áreas donde es típica la presencia del cultivo año tras año y las áreas donde es frecuente su fluctuación debido tanto a condiciones variables de salinidad del suelo como a variabilidad en las condiciones de mercado. Para ello se ha recurrido al análisis de una serie temporal de mapas de cultivos (7 años) derivados de la clasificación supervisada de imágenes Landsat TM. La determinación de las áreas típicas y de fluctuación del cultivo de arroz se hace entonces a partir del análisis estadístico de clases, y mediante superposición espacial de coberturas en un entorno SIG-Raster.
Resumo:
The objective of this work was to develop and validate a set of clinical criteria for the classification of patients affected by periodic fevers. Patients with inherited periodic fevers (familial Mediterranean fever (FMF); mevalonate kinase deficiency (MKD); tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS); cryopyrin-associated periodic syndromes (CAPS)) enrolled in the Eurofever Registry up until March 2013 were evaluated. Patients with periodic fever, aphthosis, pharyngitis and adenitis (PFAPA) syndrome were used as negative controls. For each genetic disease, patients were considered to be 'gold standard' on the basis of the presence of a confirmatory genetic analysis. Clinical criteria were formulated on the basis of univariate and multivariate analysis in an initial group of patients (training set) and validated in an independent set of patients (validation set). A total of 1215 consecutive patients with periodic fevers were identified, and 518 gold standard patients (291 FMF, 74 MKD, 86 TRAPS, 67 CAPS) and 199 patients with PFAPA as disease controls were evaluated. The univariate and multivariate analyses identified a number of clinical variables that correlated independently with each disease, and four provisional classification scores were created. Cut-off values of the classification scores were chosen using receiver operating characteristic curve analysis as those giving the highest sensitivity and specificity. The classification scores were then tested in an independent set of patients (validation set) with an area under the curve of 0.98 for FMF, 0.95 for TRAPS, 0.96 for MKD, and 0.99 for CAPS. In conclusion, evidence-based provisional clinical criteria with high sensitivity and specificity for the clinical classification of patients with inherited periodic fevers have been developed.
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.