989 resultados para Coastal lagoon
Resumo:
A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.
Resumo:
Phosphonates are organic compounds that contain a C-P bond and are a poorly characterized component of the marine phosphorus cycle. They may represent a potential source of bioavailable phosphorus, particularly in oligotrophic conditions. This study has investigated the distribution of the phnA gene which encodes phosphonoacetate hydrolase, the enzyme that mineralizes phosphonoacetate. Using newly designed degenerate primers targeting the phnA gene we analysed the potential for phosphonoacetate utilization in DNA and cDNA libraries constructed from a phytoplankton bloom in the Western English Channel during July 2006. Total RNA was isolated and reverse transcribed and phosphonoacetate hydrolase (phnA) transcripts were PCR amplified from the cDNA with the degenerate primers, cloned and sequenced. Phylogenetic analysis demonstrated considerable diversity with 14 sequence types yielding five unique phnA protein groups. We also identified 28 phnA homologues in a 454-pyrosequencing metagenomic and metatranscriptomic study from a coastal marine mesocosm, indicating that > 3% of marine bacteria in this study contained phnA. phnA homologues were also present in a metagenomic fosmid library from this experiment. Finally, cultures of four isolates of potential coral pathogens belonging to the Vibrionaceae contained the phnA gene. In the laboratory, these isolates were able to grow with phosphonoacetate as sole P and C source. The fact that the capacity to utilize phosphonoacetate was evident in each of the three coastal environments suggests the potential for widespread utilization of this bioavailable P source.
Resumo:
This study assessed nearshore, marine ecosystem function around Trinidad and Tobago (TT). The coastline of TT is highly complex, bordered by the Atlantic Ocean, the Caribbean Sea, the Gulf of Paria and the Columbus Channel, and subject to local terrestrial runoff and regional riverine inputs (e.g. the Orinoco and Amazon rivers). Coastal organisms can assimilate energy from allochthonous and autochthonous Sources, We assessed whether stable isotopes delta C-13 and delta N-15 Could be used to provide a rapid assessment of trophic interactions in primary consumers around the islands. Filter-feeding (bivalves and barnacles) and grazing organisms (gastropods and chitons) were collected from 40 marine sites during the wet season. The flesh of organisms was analysed for delta C-13 and delta N-15. Results indicate significant variation in primary consumers (by feeding guild and sampling zone). This variation was linked to different energy Sources being assimilated by consumers. Results suggest that offshore production is fuelling intertidal foodwebs; for example, a depleted delta C-13 signature in grazers from the Gulf of Paria, Columbus Channel and the Caribbean and Atlantic coastline of 9 Tobago indicates that carbon with an offshore origin (e.g. phytoplankton and dissolved organic matter) is more important than benthic or littoral algae (luring the wet season. Results also confirm findings from other studies indicating that much of the coastline is subject to Cultural eutrophication. This Study revealed that ecosystem function is spatially variable around the coastline of TT, This has clear implications for marine resource management, as a single management approach is unlikely to be successful at a national level.
Resumo:
An oceanic cruise (October 2007) revealed the widespread occurrence of Pelagia noctiluca in the NE Atlantic just prior to a major fish kill induced by P. noctiluca in Irish coastal waters.
Resumo:
Jellyfish (medusae) are sometimes the most noticeable and abundant members of coastal planktonic communities, yet ironically, this high conspicuousness is not reflected in our overall understanding of their spatial distributions across large expanses of water. Here, we set out to elucidate the spatial (and temporal) patterns for five jellyfish species (Phylum Cnidaria, Orders Rhizostomeae and Semaeostomeae) across the Irish & Celtic Seas, an extensive shelf-sea area at Europe's northwesterly margin encompassing several thousand square kilometers. Data were gathered using two independent methods: (1) surface-counts of jellyfish from ships of opportunity, and (2) regular shoreline surveys for stranding events over three consecutive years. Jellyfish species displayed distinct species-specific distributions, with an apparent segregation of some species. Furthermore, a different species composition was noticeable between the northern and southern parts of the study area. Most importantly, our data suggests that jellyfish distributions broadly reflect the major hydrographic regimes (and associated physical discontinuities) of the study area, with mixed water masses possibly acting as a trophic barrier or non-favourable environment for the successful growth and reproduction of jellyfish species.