914 resultados para Classes of flow correction
Resumo:
Spider venom sphingomyelinases D catalyze the hydrolysis of sphingomyelin via an Mg2+ ion-dependent acid-base catalytic mechanism which involves two histidines. In the crystal structure of the sulfate free enzyme determined at 1.85 angstrom resolution, the metal ion is tetrahedrally coordinated instead of the trigonal-bipyramidal coordination observed in the sulfate bound form. The observed hyperpolarized state of His47 requires a revision of the previously suggested catalytic mechanism. Molecular modeling indicates that the fundamental structural features important for catalysis are fully conserved in both classes of SMases D and that the Class II SMases D contain an additional intra-chain disulphide bridge (Cys53-Cys201). Structural analysis suggests that the highly homologous enzyme from Loxosceles bonetti is unable to hydrolyze sphingomyelin due to the 95G1y -> Asn and 134Pro -> Glu mutations that modify the local charge and hydrophobicity of the interfacial face. Structural and sequence comparisons confirm the evolutionary relationship between sphingomyelinases D and the glicerophosphodiester phosphoesterases which utilize a similar catalytic mechanism. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Suppose we have identified three clusters of galaxies as being topological copies of the same object. How does this information constrain the possible models for the shape of our universe? It is shown here that, if our universe has flat spatial sections, these multiple images can be accommodated within any of the six classes of compact orientable three-dimensional flat space forms. Moreover, the discovery of two more triples of multiple images in the neighbourhood of the first one would allow the determination of the topology of the universe, and in most cases the determination of its size.
Resumo:
We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.
Resumo:
In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.
Resumo:
The possibility that the QCD coupling constant (alpha(s)) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the frozen QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment.
Resumo:
We compare phenomenological values of the frozen QCD running coupling constant (alpha(s)) with two classes of infrared finite solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on alpha(s)(0) and F (pi)(Q(2)) is found only for one of the Schwinger-Dyson equation solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
in the city of Limeira, southeastern Brazil, an important exposure of Permian sediments of the Parana basin was revealed by an open pit mine that exploits limestone for production of soil correction compounds and raw materials for the ceramic industry. The radioactivity of these sediments was investigated in some detail and the results provided a general view of the vertical distributions of uranium, thorium and potassium concentrations and of the element ratios U/K, U/Th and Th/K. In general, the concentrations of the main natural radioactive elements are low, with uranium being enriched in some limestone and shale levels. In addition the results showed that the U-238 series is in radioactive disequilibrium in many of the analyzed samples. Although the origin of the observed disequilibrium has not been investigated, the results suggest that it is due to weathering processes and water interaction with the rock matrix. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this note we study coincidence of pairs of fiber-preserving maps f, g : E-1 -> E-2 where E-1, E-2 are S-n-bundles over a space B. We will show that for each homotopy class vertical bar f vertical bar of fiber-preserving maps over B, there is only one homotopy class vertical bar g vertical bar such that the pair (f, g), where vertical bar g vertical bar = vertical bar tau circle f vertical bar can be deformed to a coincidence free pair. Here tau : E-2 -> E-2 is a fiber-preserving map which is fixed point free. In the case where the base is S-1 we classify the bundles, the homotopy classes of maps over S-1 and the pairs which can be deformed to coincidence free. At the end we discuss the self-coincidence problem. (C) 2010 Elsevier B.V. All rights reserved.