952 resultados para Chromatography liquid with fluorescence detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.

A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.

Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.

The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).

First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.

Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.

Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.

The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.

To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.

The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.

The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.

Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.

The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.

In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Follow-up care aims to provide surveillance with early detection of recurring cancers and to address treatment complications and other health issues in survivorship. It is assumed that follow-up care fulfills these aims, however little evidence supports routine surveillance detecting curable disease early enough to improve survival. Cancer survivors are a diverse patient population, suggesting that a single follow-up regimen may not meet all patients’ follow-up needs. Little is known about what effective follow-up care should include for head and neck cancer patients in a Canadian setting. Identification of subgroups of patients with specific needs and current practices would allow for hypotheses to be generated for enhancing follow-up care. OBJECTIVES: 1a) To describe the follow-up needs and preferences of head and neck cancer patients, 1b) to identify which patient characteristics predict needs and preferences, 1c) to evaluate how needs and preferences change over time, 2a) to describe follow-up care practices by physician visits and imaging tests, and 2b) to identify factors associated to the delivered follow-up care. METHODS: 1) 175 patients who completed treatment between 2012 and 2013 in Kingston and London, Ontario were recruited to participate in a prospective survey study on patients’ needs and preferences in follow-up care. Bivariate and multivariate analyses were employed to describe patient survey responses and to identify patient characteristics that predicted needs and preferences. 2) A retrospective cohort study of 3975 patients on routine follow-up from 2007 to 2015 was carried out using data linkages across registry and administrative databases to describe follow-up practices in Ontario by visits and tests. Multivariate regression analyses assessed factors related to follow-up care. RESULTS: 1) Patients’ needs and preferences were wide-ranging with several characteristics predicting needs and preferences (ORECOG=2.69 and ORAnxiety=1.13). Needs and preferences declined as patients transitioned into their second year of follow-up (p<0.05). 2) Wide variation in practices was found, with marked differences compared to existing consensus guidelines. Multiple factors were associated with follow-up practices (RRTumor site=0.73 and RRLHIN=1.47). CONCLUSIONS: Patient characteristics can be used to personalize care and guidelines are not informing practice. Future research should evaluate individualized approaches to follow-up care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex sub-cellular structures, and many other cellular phenomena. They form three-dimensional assemblies, which act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we employ various experimental, theoretical and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube’s length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30–40% of a tube’s surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les systèmes de communication optique avec des formats de modulation avancés sont actuellement l’un des sujets de recherche les plus importants dans le domaine de communication optique. Cette recherche est stimulée par les exigences pour des débits de transmission de donnée plus élevés. Dans cette thèse, on examinera les techniques efficaces pour la modulation avancée avec une détection cohérente, et multiplexage par répartition en fréquence orthogonale (OFDM) et multiples tonalités discrètes (DMT) pour la détection directe et la détection cohérente afin d’améliorer la performance de réseaux optiques. Dans la première partie, nous examinons la rétropropagation avec filtre numérique (DFBP) comme une simple technique d’atténuation de nonlinéarité d’amplificateur optique semiconducteur (SOA) dans le système de détection cohérente. Pour la première fois, nous démontrons expérimentalement l’efficacité de DFBP pour compenser les nonlinéarités générées par SOA dans un système de détection cohérente porteur unique 16-QAM. Nous comparons la performance de DFBP avec la méthode de Runge-Kutta quatrième ordre. Nous examinons la sensibilité de performance de DFBP par rapport à ses paramètres. Par la suite, nous proposons une nouvelle méthode d’estimation de paramètre pour DFBP. Finalement, nous démontrons la transmission de signaux de 16-QAM aux taux de 22 Gbaud sur 80km de fibre optique avec la technique d’estimation de paramètre proposée pour DFBP. Dans la deuxième partie, nous nous concentrons sur les techniques afin d’améliorer la performance des systèmes OFDM optiques en examinent OFDM optiques cohérente (CO-OFDM) ainsi que OFDM optiques détection directe (DDO-OFDM). Premièrement, nous proposons une combinaison de coupure et prédistorsion pour compenser les distorsions nonlinéaires d’émetteur de CO-OFDM. Nous utilisons une interpolation linéaire par morceaux (PLI) pour charactériser la nonlinéarité d’émetteur. Dans l’émetteur nous utilisons l’inverse de l’estimation de PLI pour compenser les nonlinéarités induites à l’émetteur de CO-OFDM. Deuxièmement, nous concevons des constellations irrégulières optimisées pour les systèmes DDO-OFDM courte distance en considérant deux modèles de bruit de canal. Nous démontrons expérimentalement 100Gb/s+ OFDM/DMT avec la détection directe en utilisant les constellations QAM optimisées. Dans la troisième partie, nous proposons une architecture réseaux optiques passifs (PON) avec DDO-OFDM pour la liaison descendante et CO-OFDM pour la liaison montante. Nous examinons deux scénarios pour l’allocations de fréquence et le format de modulation des signaux. Nous identifions la détérioration limitante principale du PON bidirectionnelle et offrons des solutions pour minimiser ses effets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé : Malgré le nombre croissant de capteurs dans les domaines de la chimie et la biologie, il reste encore à étudier en profondeur la complexité des interactions entre les différentes molécules présentes lors d’une détection à l’interface solide-liquide. Dans ce cadre, il est de tout intérêt de croiser différentes méthodes de détection afin d’obtenir des informations complémentaires. Le principal objectif de cette étude est de dimensionner, fabriquer et caractériser un détecteur optique intégré sur verre basé sur la résonance plasmonique de surface, destiné à terme à être combiné avec d’autres techniques de détection, dont un microcalorimètre. La résonance plasmonique de surface est une technique reconnue pour sa sensibilité adaptée à la détection de surface, qui a l’avantage d’être sans marquage et permet de fournir un suivi en temps réel de la cinétique d’une réaction. L’avantage principal de ce capteur est qu’il a été dimensionné pour une large gamme d’indice de réfraction de l’analyte, allant de 1,33 à 1,48. Ces valeurs correspondent à la plupart des entités biologiques associées à leurs couches d’accroche dont les matrices de polymères, présentés dans ce travail. Étant donné que beaucoup d’études biologiques nécessitent la comparaison de la mesure à une référence ou à une autre mesure, le second objectif du projet est d’étudier le potentiel du système SPR intégré sur verre pour la détection multi-analyte. Les trois premiers chapitres se concentrent sur l’objectif principal du projet. Le dimensionnement du dispositif est ainsi présenté, basé sur deux modélisations différentes, associées à plusieurs outils de calcul analytique et numérique. La première modélisation, basée sur l’approximation des interactions faibles, permet d’obtenir la plupart des informations nécessaires au dimensionnement du dispositif. La seconde modélisation, sans approximation, permet de valider le premier modèle approché et de compléter et affiner le dimensionnement. Le procédé de fabrication de la puce optique sur verre est ensuite décrit, ainsi que les instruments et protocoles de caractérisation. Un dispositif est obtenu présentant des sensibilités volumiques entre 1000 nm/RIU et 6000 nm/RIU suivant l’indice de réfraction de l’analyte. L’intégration 3D du guide grâce à son enterrage sélectif dans le verre confère au dispositif une grande compacité, le rendant adapté à la cointégration avec un microcalorimètre en particulier. Le dernier chapitre de la thèse présente l’étude de plusieurs techniques de multiplexage spectral adaptées à un système SPR intégré, exploitant en particulier la technologie sur verre. L’objectif est de fournir au moins deux détections simultanées. Dans ce cadre, plusieurs solutions sont proposées et les dispositifs associés sont dimensionnés, fabriqués et testés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactide-co-glycolide), or PLGA, microspheres offer a widely-studied biodegradable option for controlled release of therapeutics. An array of fabrication methodologies have been developed to produce these microspheres with the capacity to encapsulate therapeutics of various types; and produce microspheres of a wide range of sizes for different methods of delivery. The encapsulation, stability, and release profiles of therapeutic release based on physical and thermodynamic properties has also been studied and modeled to an extent. Much research has been devoted to tailoring formulations for improved therapeutic encapsulation and stability as well as selective release profiles. Despite the breadth of available research on PLGA microspheres, further analysis of fundamental principles regarding the microsphere degradation, formation, and therapeutic encapsulation is necessary. This work aims to examine additional fundamental principles related to PLGA microsphere formation and degradation from solvent-evaporation of preformed polymer. In particular, mapping the development of the acidic microenvironment inside the microsphere during degradation and erosion is discussed. Also, the effect of macromolecule size and conformation is examined with respect to microsphere diameter and PLGA molecular weight. Lastly, the effects of mechanical shearing and protein exposure to aqueous media during microsphere formation are examined. In an effort to better understand the acidic microenvironment development across the microsphere diameter, pH sensitive dye conjugated to protein that undergoes conformational change at different acidic pH values was encapsulated in PLGA microspheres of diameters ranging from 40 µm to 80 µm, and used in conjunction with fluorescence resonance energy transfer to measure the radial pH change in the microspheres. Qualitative analysis of confocal micrographs was used to correlate fluorescence intensity with pH value, and obtain the radial pH across the center of the microsphere. Therapeutic encapsulation and release from polymeric microspheres is governed by an interconnected variety of factors, including the therapeutic itself. The globular protein bovine serum albumin, and the elongated and significantly smaller enzyme, lysozyme, were encapsulated in PLGA microspheres ranging from 40 µm to 80 µm in diameter. The initial surface morphology upon microsphere formation, release profiles, and microsphere erosion characteristics were explored in an effort to better understand the effect of protein size, conformation, and known PLGA interaction on the formation and degradation of PLGA microspheres and macromolecule release, with respect to PLGA molecular weight and microsphere diameter. In addition to PLGA behavior and macromolecule behavior, the effect of mechanical stresses during fabrication was examined. Two similar solvent extraction techniques were compared for the fabrication of albumin loaded microspheres. In particular, the homogeneity of the microspheres as well as capacity to retain encapsulated albumin were compared. This preliminary study paves the way for a more rigorous treatment of the effect of mechanical forces present in popular microsphere fabrication. Several factors affecting protein release from PLGA microspheres are examined herein. The technique explored for spatial resolution of the pH inside the microsphere proved mildly effective in producing a reliable method of mapping microsphere pH changes. However, notable trends with respect to microsphere size, PLGA molecular weight, and microsphere porosity were observed. Proposed methods of improving spatial resolution of the acidic microenvironment are also provided. With respect to microsphere formation, studies showed that albumin and lysozyme had little effect on the internal homogeneity of the microsphere. Rather, ionic interactions with PLGA played a more significant role in the encapsulation and release of each macromolecule. Studies also showed that higher instances of mechanical stress led to less homogeneous microspheres with lower protein encapsulation. This suggests that perhaps instead of or in addition to modifying the microsphere formation formulation, the fabrication technique itself should be more closely considered in achieving homogeneous microspheres with desired loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat fragmentation and the consequently the loss of connectivity between populations can reduce the individuals interchange and gene flow, increasing the chances of inbreeding, and the increase the risk of local extinction. Landscape genetics is providing more and better tools to identify genetic barriers.. To our knowledge, no comparison of methods in terms of consistency has been made with observed data and species with low dispersal ability. The aim of this study is to examine the consistency of the results of five methods to detect barriers to gene flow in a Mediterranean pine vole population Microtus duodecimcostatus: F-statistics estimations, Non-Bayesian clustering, Bayesian clustering, Boundary detection and Simple/Partial Mantel tests. All methods were consistent in detecting the stream as a non-genetic barrier. However, no consistency in results among the methods were found regarding the role of the highway as a genetic barrier. Fst, Bayesian clustering assignment test and Partial Mantel test identifyed the highway as a filter to individual interchange. The Mantel tests were the most sensitive method. Boundary detection method (Monmonier’s Algorithm) and Non-Bayesian approaches did not detect any genetic differentiation of the pine vole due to the highway. Based on our findings we recommend that the genetic barrier detection in low dispersal ability populations should be analyzed with multiple methods such as Mantel tests, Bayesian clustering approaches because they show more sensibility in those scenarios and with boundary detection methods by having the aim of detect drastic changes in a variable of interest between the closest individuals. Although simulation studies highlight the weaknesses and the strengths of each method and the factors that promote some results, tests with real data are needed to increase the effectiveness of genetic barrier detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most countries along with various food products, fish sausage is supplied in different formulas. Unfortunately, in our country because of different reasons, production and supply of fish sausage in industrial level has not yet been successful and some efforts taken, has also been doomed to failure or not welcomed. Fat fish is a rich source of poly unsaturated fatty acids (PUFA) and co-3. In this research, efforts have been made to produce and enrich sausage with fish oil and maintenance of fatty acids has also been experimented using gas chromatography along with heating process. The stages of producing ground fish and fish sausage are as the following: Transferring and preparing fish, washing the cleared fish, filleting, separating fillet steak, washing and drying them, Refining meat, Producing and homogenizing mixture from basic ingredients in a cutter, filling, knotting and heat processing. The fish sausage produced by this method tried and welcomed by the subjects. In the product in which fish meat was used, the subjects was not recognized fish flavor and taste and when in addition to fish meat, fish oil was used during enrichment, the flavor and taste of fish was considered as highly acceptable. TVN measurement of the produced fish sausage was kept in the refrigerator in two month was at a maximum of 16.5, the amount of peroxide was at a maximum 1.5% after the period of two months. During this period the Colony count was at maximum of 19.5 x 104, the high maximum of the number of coliforms was 10/gr, and for mold and yeast 83/gr , but Escherichia coli, Staphylococcus aureus, Salmonella and Clostridium perfringens were not found. The protein of the resulting product was 15-18%, lipid at about 11-15% and moisture 60-65%. Comparing fatty acids, including unsaturated fatty acids in ground and oil fish used in producing fish sausage with those of fish sausage showed that the heat used in processing had the least effect on fatty acids of the meat and oil used here and the resulting fish sausage is considered as food for good health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No presente relatório são caracterizadas e descritas as atividades desenvolvidas durante o estágio curricular na vertente da importância do maneio, ambiente e animal no controlo das mastites. Contempla ainda uma revisão bibliográfica e estudo de caso sobre a problemática das mastites na exploração. No estudo de caso procurou avaliar-se a influência do maneio, ambiente e animal no controlo das mastites e o impacto que estas representam na quantidade e na qualidade do leite. Foi ainda realizado estudo em 30 bovinos, identificados como animais problema, com recolha de amostras de leite para análise de antibiograma com deteção de agente. Foi implementado um plano de prevenção e controlo de mastites que consistiu na implementação de medidas de higiene e maneio dos animais, implementação de operações de rotinas de ordenha, implementação de medidas preventivas com recurso a vacinação e estabelecimentos de protocolos de tratamentos para os animais com patologias associadas às mastites. Os resultados obtidos foram muito positivos, diminuindo de forma drástica a incidência de mastites de 20% para 5% anual e consequentemente, uma melhoria considerável da quantidade de leite (22 para 33 L/vaca/dia) e na qualidade do leite (CCS <300 000 cel/mL) produzido; Abstract: Mastitis: Importance of management, environment and animal. Plan for the prevention, control and impact on the quantity and quality of milk This report characterize and describe the activities carried out during the traineeship in the aspect of the importance of management, environment and animal in the control of mastitis. There is also a literature and a case study on the problem of mastitis on the farm review. In the case study we sought to evaluate the influence of management, environment and animal in the control of mastitis and the impact that they represent in the quantity and quality of milk. A study was also carried out in 30 cattle, identified as problem animals, with milk samples for antibiotic susceptibility analysis with agent detection. It was implemented a mastitis prevention and control plan with the implementation of hygiene measures and husbandry of animals, implementation of milking routine operations, and implementing preventive measures using vaccination and treatment protocols establishment for animal diseases associated with mastitis. The results were very positive, decreasing dramatically the incidence of 20% mastitis to 5% per year and hence a considerable improvement of the quantity (22 to 33 L/cow/day) and quality ( SCC <300,000 cells/mL) of milk produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparin is a pharmaceutical animal widely used in medicine due to its potent anticoagulant effect. Furthermore, it has the ability to inhibit the proliferation, invasion and adhesion of cancer cells to vascular endothelium. However, its clinical applicability can be compromised by side effects such as bleeding. Thus, the search for natural compounds with low bleeding risk and possible therapeutic applicability has been targeted by several research groups. From this perspective, this study aims to evaluate the hemorrhagic and anticoagulant activities and citotoxic effect for different tumor cell lines (HeLa, B16-F10, HepG2, HS-5,) and fibroblast cells (3T3) of the Heparin-like from the crab Chaceon fenneri (HEP-like). The HEP-like was purified after proteolysis, ion-exchange chromatography, fractionation with acetone and characterized by electrophoresis (agarose gel) and enzymatic degradation. Hep-like showed eletroforetic behavior similar to mammalian heparin, and high trisulfated /Nacetylated disaccharides ratio. In addition, HEP-like presented low in vitro anticoagulant activity using aPTT and a minor hemorrhagic effect when compared to mammalian heparin. Furthermore, the HEP-like showed significant cytotoxic effect (p<0.001) on HeLa, HepG2 and B16-F10 tumor cells with IC50 values of 1000 ug/mL, after incubation for 72 hours. To assess the influence of heparin-like on the cell cycle in HeLa cells, analysis was performed by flow cytometry. The results of this analysis showed that HEP-like influence on the cell cycle increasing S phase and decreasing phase G2. Thus, these properties of HEP-like make these compounds potential therapeutic agents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the pharmacokinetic parameters of liposomal ropivacaine after dental anesthesia in 14 healthy volunteers. In this randomized, double-blind and crossover study, the volunteers received maxillary infiltration of liposome-encapsulated 0.5% ropivacaine and, 0.5% ropivacaine with 1:200,000 epinephrine in two different sessions. Blood samples were collected before and after (from 15 to 1440 min) the administration of either ropivacaine formulation. HPLC with UV detection was used to quantify plasma ropivacaine concentrations. The pharmacokinetic parameters AUC(0-24) (area under the plasma concentration x time curve from baseline to 24 h), AUC(0-infinity) (area under the plasma concentration-time curve from baseline to infinity), C-max (maximum drug concentration), CL (renal clearance), T-max (maximum drug concentration time), t(1/2) (elimination half-life) and Vd (volume of distribution) were analyzed using the Wilcoxon signed-rank test. No differences (p > 0.05) were observed between both formulations for any of the pharmacokinetic parameters evaluated and plasma ropivacaine concentrations, considering each period of time. Both formulations showed similar pharmacokinetic profiles, indicating that the liposomal formulation could be a safer option for use of this local anesthetic, due to the absence of a vasoconstrictor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l(-1) acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96 x 10(-4) to 1.07 x 10(-3) mol l(-1) with a detection limit of 8.0 x 10(-5) mol l(-1). The relative standard deviation was 1.2% for 1.96 x 10(-4) mol l(-1) isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method. (C) 2004 Elsevier B.V. All rights reserved.