908 resultados para Cholesterol oxidase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary growth of plants is of pivotal importance in terrestrial ecosystems, providing a significant carbon sink in the form of wood. As plant biomass accumulation results largely from the cambial growth, it is surprising that quite little is known about the hormonal or genetic control of this important process in any plant species. The central aim of my thesis studies was to explore the function of cytokinin in the regulation of cambial development. Since their discovery as regulators of plant cell divisions, cytokinins have been assumed to participate in the control of cambial development. Evidence for this action was deduced from hormone treatment experiments, where exogenously applied cytokinin was shown to enhance cambial cell divisions in diverse plant organs and species. In my thesis work, the conservation of cytokinin signalling and homeostasis genes between a herbaceous plant, Arabidopsis, and a hardwood tree species, Populus trichocarpa. Presumably reflecting the ancient origin of cytokinin signalling system, the Populus genome contains orthologs for all Arabidopsis cytokinin signalling and homeostasis genes. Thus, genes belonging to five main families of isopentenyl transferases (IPTs), cytokinin oxidases (CKXs), two-component receptors, histidine containing phosphotransmitters (HPts) and response regulators (RRs) were identified from the Populus genome. Three subfamilies associated with cytokinin signal transduction, the CKI1-like family of two-component receptors, the AHP4-like HPts, and the ARR22-like atypical RRs, were significantly larger in Populus genome than in Arabidopsis. Potential contribution to the extensive secondary development of Populus by the members of these considerably expanded gene families will be discussed. Representatives of all cytokinin signal transduction elements were expressed in the Populus cambial zone, and most of the expressed genes appeared to be slightly more abundant on the phloem side of the meristem. The abundance of cytokinin related genes in the cambium emphasizes the important role of this hormone in the regulation of the extensive secondary growth characteristic of tree species. The function of the pseudo HPts in primary vascular development was studied in Arabidopsis root vasculature. It was demonstrated that the pseudo HPt AHP6 has a role in locally inhibiting cytokinin signalling in the protoxylem position in the Arabidopsis root, thus enabling differentiation of the protoxylem cell file. The possible role of pseudo HPts in cambial development will be discussed. The expression peak of cytokinin signalling genes in the tree cambial zone strongly indicates that cytokinin has a role in the regulation of this meristem function. To address whether cytokinin signalling is required for cambial activity, transgenic Populus trees with modified cytokinin signalling were produced. These trees were expressing a cytokinin catabolic gene from Arabidopsis, CYTOKININ OXIDASE 2, (AtCKX2) under the promoter of a Betula CYTOKININ RECEPTOR 1 (BpCRE1). The pBpCRE1::CKX2 transgenic Populus trees showed a reduced concentration of a biologically active cytokinin, correlating with their impaired cytokinin response. Furthermore, the radial growth of these trees was compromised, as illustrated by a smaller stem diameter than in wild-type trees of the same height. Moreover, the level of cambial cytokinin signalling was down-regulated in these thin-stemmed trees. The reduced signalling correlated with a decreased number of meristematic cambial cells, implicating cytokinin activity as a direct regulator of cambial cell division activity. Together, the results of my study indicate that cytokinins are major hormonal regulators required for cambial development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome that is inherited by an autosomal recessive manner. HLS belongs to the Finnish disease heritage, an entity of rare diseases that are more prevalent in Finland than in other parts of the world. The phenotypic spectrum of the syndrome is wide and it is characterized by several developmental abnormalities, including hydrocephalus and absent midline structures in the brain, abnormal lobation of the lungs, polydactyly as well as micrognathia and other craniofacial anomalies. Polyhydramnios are relatively frequent during pregnancy. HLS can nowadays be effectively identified by ultrasound scan already at the end of the first trimester of pregnancy. One of the main goals in this study was to identify and characterize the gene defect underlying HLS. The defect was found from a previously unknown gene that was named HYLS1. Identification of the gene defect made it possible to confirm the HLS diagnosis genetically, an aspect that provides valuable information for the families in which a fetus is suspected to have HLS. Neuropathological findings of mutation confirmed HLS cases were described for the first time in detail in this study. Also, detailed general pathological findings were described. Since HYLS1 was an unknown gene with no relatives in the known gene families, many functional studies were performed in order to unravel the function of the gene and of the protein it codes for. Studies showed, for example, that the subcellular localization of the HYLS1 protein was different when the normal and the defective forms were compared. In addition, HYLS1 was shown to possess transactivation potential which was significantly diminished in the defective form. According to the results of this study it can be stated that HYLS1 most likely participates in transcriptional regulation and also in the regulation of cholesterol metabolism and that the function of HYLS1 is critical for normal fetal development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protocatechuate-3,4-dioxygenase from the leaves of Tecoma stans was purified to near homogeneity and some of its properties studied. It was optimally active at pH 5.2 and at 40°C. Its molecular weight of approx. 150 000 was determined by gel filtration on a Sephadex G-150 column. The Km value for protocatechuate was found to be 330 μM and for ferrous sulfate, 40 μM. The enzyme was highly specific for protocatechuate and did not attack any of the substrate analogues. None of the substrate analogues tested inhibited the enzyme activity. Sulfhydryl reagents inhibited the enzyme activity which could be partially reversed by sulfhydryl compounds. The dioxygenase activity was not associated with polyphenol oxidase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular membrane alterations are hallmarks of positive-sense RNA (+RNA) virus replication. Strong evidence indicates that within these exotic compartments, viral replicase proteins engage in RNA genome replication and transcription. To date, fundamental questions such as the origin of altered membranes, mechanisms of membrane deformation and topological distribution and function of viral components, are still waiting for comprehensive answers. This study addressed some of the above mentioned questions for the membrane alterations induced during Semliki Forest virus (SFV) infection of mammalian cells. With the aid of electron and fluorescence microscopy coupled with radioactive labelling and immuno-cytochemistry techniques, our group and others showed that few hours after infection the four non structural proteins (nsP1-4) and newly synthesized RNAs of SFV colocalized in close proximity of small membrane invaginations, designated as spherules . These 50-70 nm structures were mainly detected in the perinuclear area, at the limiting membrane of modified endosomes and lysosomes, named CPV-I (cytopathic vacuoles type I). More rarely, spherules were also found at the plasma membrane (PM). In the first part of this study I present the first three-dimensional reconstruction of the CPV-I and the spherules, obtained by electron tomography after chemical or cryo-fixation. Different approaches for imaging these macromolecular assemblies to obtain better structure preservation and higher resolution are presented as unpublished data. This study provides insights into spherule organization and distribution of viral components. The results of this and other experiments presented in this thesis will challenge currently accepted models for virus replication complex formation and function. In a revisitation of our previous models, the second part of this work provides the first complete description of the biogenesis of the CPV-I. The results demonstrate that these virus-induced vacuoles, where hundreds of spherules accumulate at late stages during infection, represent the final phase of a journey initiated at the PM, which apparently serves as a platform for spherule formation. From the PM spherules were internalized by an endocytic event that required the activity of the class I PI3K, caveolin-1, cellular cholesterol and functional actin-myosin network. The resulting neutral endocytic carrier vesicle delivered the spherules to the membrane of pre-existing acidic endosomes via multiple fusion events. Microtubule based transport supported the vectorial transfer of these intermediates to the pericentriolar area where further fusions generated the CPV-I. A signal for spherule internalization was identified in one of the replicase proteins, nsP3. Infections of cells with viruses harbouring a deletion in a highly phosphorylated region of nsP3 did not result in the formation of CPV-Is. Instead, thousands of spherules remained at the PM throughout the infection cycle. Finally, the role of the replicase protein nsP2 during viral RNA replication and transcription was investigated. Three enzymatic activities, protease, NTPase and RNA-triphosphatase were studied with the aid of temperature sensitive mutants in vitro and, when possible, in vivo. The results highlighted the interplay of the different nsP2 functions during different steps of RNA replication and sub-genomic promoter regulation, and suggest that the protein could have different activities when participating in the replication complex or as a free enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studying neurodegeneration provides an opportunity to gain insights into normal cell physiology, and not just pathophysiology. In this thesis work the focus is on Infantile Neuronal Ceroid Lipofuscinosis (INCL). It is a recessively inherited lysosomal storage disorder. The disease belongs to the neuronal ceroid lipofuscinoses (NCLs), a group of common progressive neurodegenerative diseases of the childhood. Characteristic accumulation of autofluorescent storage material is seen in most tissues but only neurons of the central nervous system are damaged and eventually lost during the course of the disease leaving most other cell types unaffected. The disease is caused by mutations in the CLN1 gene, but the physiological function of the corresponding protein the palmitoyl protein thioesterase (PPT1) has remained elusive. The aim of this thesis work was to shed light on the molecular and cell biological mechanisms behind INCL. This study pinpointed the localization of PPT1 in axonal presynapses of neurons. It also established the role of PPT1 in early neuronal maturation as well as importance in mature neuronal synapses. This study revealed an endocytic defect in INCL patient cells manifesting itself as delayed trafficking of receptor and non-receptor mediated endocytic markers. Furthermore, this study was the first to connect the INCL storage proteins the sphingolipid activator proteins (SAPs) A and D to pathological events on the cellular level. Abnormal endocytic processing and intracellular re-localization was demonstrated in patient cells and disease model knock-out mouse neurons. To identify early affected cellular and metabolic pathways in INCL, knock-out mouse neurons were studied by global transcript profiling and functional analysis. The gene expression analysis revealed changes in neuronal maturation and cell communication strongly associated with the regulated secretory system. Furthermore, cholesterol metabolic pathways were found to be affected. Functional studies with the knock-out mouse model revealed abnormalities in neuronal maturation as well as key neuronal functions including abnormalities in intracellular calcium homeostasis and cholesterol metabolism. Together the findings, introduced in this thesis work, support the essential role of PPT1 in developing neurons as well as synaptic sites of mature neurons. Results of this thesis also elucidate early events in INCL pathogenesis revealing defective pathways ultimately leading to the neurodegenerative process. These results contribute to the understanding of the vital physiological function of PPT1 and broader knowledge of common cellular mechanisms behind neurodegeneration. These results add to the knowledge of these severe diseases offering basis for new approaches in treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacilysin is a non-ribosomally synthesized dipeptide antibiotic that is active against a wide range of bacteria and some fungi. Synthesis of bacilysin (L-alanine-[2,3-epoxycyclohexano-4]-L-alanine) is achieved by proteins in the bac operon, also referred to as the bacABCDE (ywfBCDEF) gene cluster in B. subtilis. Extensive genetic analysis from several strains of B. subtilis suggests that the bacABC gene cluster encodes all the proteins that synthesize the epoxyhexanone ring of L-anticapsin. These data, however, were not consistent with the putative functional annotation for these proteins whereby BacA, a prephenate dehydratase along with a potential isomerase/guanylyl transferase, BacB and an oxidoreductase, BacC, could synthesize L-anticapsin. Here we demonstrate that BacA is a decarboxylase that acts on prephenate. Further, based on the biochemical characterization and the crystal structure of BacB, we show that BacB is an oxidase that catalyzes the synthesis of 2-oxo-3-(4-oxocyclohexa-2,5-dienyl)propanoic acid, a precursor to L-anticapsin. This protein is a bi-cupin, with two putative active sites each containing a bound metal ion. Additional electron density at the active site of the C-terminal domain of BacB could be interpreted as a bound phenylpyruvic acid. A significant decrease in the catalytic activity of a point variant of BacB with a mutation at the N-terminal domain suggests that the N-terminal cupin domain is involved in catalysis.