917 resultados para Ceramic foam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. These standard techniques face significant disadvantages. As a result, research has focused on the development of alternative therapeutic concepts aiming to design and engineer unparalleled structural and functional bone grafts. Substantial academic and commercial interest has been sparked in bone engineering methods to stimulate, control and eventually replicate key events of bone regeneration ex vivo. Over the years, this interest has further increased and bone tissue engineering has now become a well-recognized research discipline in the area of regenerative medicine. The following chapter gives an overview of bone tissue engineering principles. It focuses on research related to the combination of scaffolds with multipotent precursor cells, such as bone marrow-derived mesenchymal stem cells or human umbilical cord perivascular cells, and the clinical applications of these tissue engineered bone constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioactive materials with osteostimulation properties are of great importance to promote osteogenic differentiation of human bone marrow stromal cells (hBMSCs) for potential bone regeneration. We have recently synthesized nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic powders which showed excellent apatite-mineralization ability. The aim of this study was to investigate the interaction of hBMSCs with NAGEL bioceramic bulks and their ionic extracts, and to explore the osteostimulation properties of NAGEL bioceramics and the possible molecular mechanism. The cell attachment, proliferation, bone-related gene expression (ALP, OPN and OCN) and WNT signalling pathways (WNT3a, FZD6, AXIN2 and CTNNB) of hBMSCs cultured on NAGEL bioceramic disks were systematically studied. We further investigated the biological effects of ionic products from NAGEL powders on cell proliferation and osteogenic differentiation of hBMSCs by culturing cells with NAGEL extracts. Furthermore, the effect of NAGEL bioceramics on the osteogenic differentiation in hBMSCs was also investigated with the addition of cardamonin, a WNT inhibitor. The results showed that NAGEL bioceramic disks supported the attachment and proliferation of hBMSCs, and significantly enhanced the bone-related gene expression and WNT signalling pathway of hBMSCs, compared to conventional beta-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic products from NAGEL powders also significantly promoted the proliferation, bone and WNT-related gene expression of hBMSCs. It was also identified that NAGEL bioceramics could bypass the action of the WNT inhibitor (10 μM) to stimulate the selected osteogenic genes in hBMSCs. Our results suggest that NAGEL bioceramics possess excellent in vitro osteostimulation properties. The possible mechanism for the osteostimulation may be directly related to the released Si, Ca and P-containing ionic products from NAGEL bioceramics which activate bone-related gene expression and WNT signalling pathway of hBMSCs. The present study suggests that NAGEL bioceramics are a potential bone regeneration material with significant osteostimulation capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of HTS joints of Bi-2212/Ag tapes and laminates, which are fabricated by dip-coating and partial-melt processes, have been investigated. All joints are prepared using green single and laminated tapes and according to the scheme: coating-joining-processing. The heat treated tapes have critical current (Ic) between 7 and 27 A, depending on tape thickness and the number of Bi-2212 ceramic layers in laminated tapes. It is found that the current transport properties of joints depend on the type of laminate, joint configuration and joint treatment, Ic losses in joints of Bi-2212 tapes and laminates are attributed to defects in their structure, such as pores, secondary phases and misalignment of Bi-2212 grains near the Ag edges. By optimizing joint configuration, current transmission up to 100% is achieved for both single tapes and laminated tapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FT Raman spectroscopy has been used to characterise the composition of the oxalate precursor to YBCO superconductors. By comparison to spectra of barium, copper and yttrium oxalate it is concluded that the co-precipitate incorporates not only the individual oxalate species but also a species ascribed to a mixed oxalate system. Significantly, Raman spectroscopy demonstrated that the precursor was not amorphous as previously deduced from XRD studies. In contrast, it is hypothesised that the sample consists of very small crystalline particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transformation toughening ceramics (TTCs) are engineering materials which combine ceramic properties such as hardness, corrosion resistance and low thermal conductivity with good toughness and mechanical strength. At elevated temperatures their use is limited due to destabilisation of the transformation toughening microstructure (partially stabilised zirconia or PSZ) or creep and hydrothermal degradation (tetragonal zirconia polycrystals or TZPs). Despite these limitations, the use of TTCs, particularly zirconia based, has become widespread. To date, most commercial TTCs are based on combinations of zirconia and one stabilising oxide. This work investigates a zirconia ceramic containing two stabilisers, namely yttria and titania in roughly equal proportions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin-sectioned samples mounted on glass slides with common petrographic epoxies cannot be easily removed (for subsequent ion-milling) by standard methods such as heating or dissolution in solvents. A method for the removal of such samples using a radio frequency (RF) generated oxygen plasma has been investigated for a number of typical petrographic and ceramic thin sections. Sample integrity and thickness were critical factors that determined the etching rate of adhesive and the survivability of the sample. Several tests were performed on a variety of materials in order to estimate possible heating or oxidation damage from the plasma. Temperatures in the plasma chamber remained below 138°C and weight changes in mineral powders etched for 76 hr were less than ±4%. A crystal of optical grade calcite showed no apparent surface damage after 48 hr of etching. Any damage from the oxygen plasma is apparently confined to the surface of the sample, and is removed during the ion-milling stage of transmission electron microscopy (TEM) sample preparation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An innovative structure — nanozeolites (as shell) grown with preferred orientation on ceramic nanofibers (as core) was proposed. The Y-zeolite nanocrystals on TiO2 nanofibers exhibited superior ability to catalyze acetalization and carboxylation reaction, achieving high conversions to desired products with selectivity of 100% under moderate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of YBa2Cu3O7-δ ceramics prepared from freeze dried powders and containing an excess of CuO have been studied by analytical electron microscopy. Special attention has been paid to the interfacial microstructure. It was found that a liquid phase formed during sintering between 890°C and 920°C and this promoted grain growth and densification. Both clean grain boundaries and boundaries containing an amorphous intergranular film, which was rich in Cu, have been observed. Both CuO and BaCuO2 were present as secondary phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser deposition was used to deposit YBaCuO thin films on Yttria-stabilized Zirconia substrates, at substrate holder temperatures of 710-765 °C. We observed a transition from singlecrystalline to polycrystalline growth at a temperature of ∼750 °C. All films were highly c-axis oriented and had critical temperatures between 89.5 and 92 K. In the twinned singlecrystalline films, the lowest measured microwave surface resistance was 0.37 mΩ at 4.2 K and 21.5 GHz, and the highest critical current 5×106 A/cm2 at 77 K. The polycrystalline films had up to a factor of 50 higher surface resistance and a factor of 10 lower critical current. A meander line resonator made of a film on a LaAlO3 substrate, showed a microwave surface resistance of 5μΩ at 4.2 K and 2.5 GHz. © 1991.