992 resultados para Caveolin 1
Resumo:
Nisäkkäillä keskushermoston uudistuminen on rajallista. Keskushermostovamman jälkeen aktivoituu monien paranemista edistävien tekijöiden lisäksi myös estäviä tekijöitä. Monella molekyylillä, kuten laminiinilla, on keskushermoston paranemista tehostava vaikutus. Laminiinit ovat myös kehon tyvikalvojen oleellisia rakennuskomponentteja. Keskushermoston laminiinit ovat tärkeitä sikiökehityksen aikana, esimerkiksi hermosäikeiden ohjauksessa. Myöhemmin ne osallistuvat veriaivoesteen ylläpitoon sekä vammojen jälkeiseen kudosreaktioon. Väitöskirjatutkimuksessani olen selvittänyt lamiiniinien, erityisesti γ1 laminiinin ja sen KDI peptidin, ekspressiota keskushermoston vammatilanteissa. Kokeellisessa soluviljelmäasetelmassa, joka simuloi vammautunutta keskushermostoympäristöä, osoitimme että KDI peptidi voimistaa sekä hermosolujen selviytymistä että hermosäikeiden kasvua. Kainihappo on glutamaattianalogi, ja glutamaattitoksisuudella uskotaan olevan tärkeä merkitys keskushermoston eri vamma- ja sairaustilanteissa tapahtuvassa hermosolukuolemassa. Toisessa väitöskirjani osatyössä osoitimme eläinmallissa KDI peptidin suojaavan rotan aivojen hippokampuksen hermosoluja kainihapon aiheuttamalta solutuholta. Elektrofysiologisilla mittauksilla osoitimme kolmannessa osatyössäni, että KDI peptidi estää glutamaattireseptorivirtoja ja suojaa siten glutamaattitoksisuudelta. Aivoveritulpan aiheuttama aivovaurio on yleinen syy aivohalvaukseen. Viimeisessä osatyössäni tutkimme eläinmallissa laminiinien ekspressiota iskemian vaurioittamassa aivokudoksessa. Laminiiniekspression todettiin voimistuvan vaurion jälkeen sekä tyvikalvo- että soluväliainerakenteissa. Vaurion ympärillä havaittiin astrosyyttejä, jotka jo melko aikaisessa vaiheessa vamman jälkeen ekspressoivat γ1 laminiinia ja KDI peptidiä. Tästä voidaan päätellä laminiinien osallistuvan aivoiskeemisen vaurion patofysiologiaan. Yleisesti väitöskirjatyöni kartoitti laminiinien ekspressiota sekä terveessä että vammautuneessa keskushermostossa. Väitöskirjatyöni tukee hypoteesia, jonka mukaan KDI peptidi suojaa keskushermostoa vaurioilta.
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Resumo:
The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.
Resumo:
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.
Resumo:
Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.
Resumo:
Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.
Resumo:
The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.
Resumo:
In the title compound, C19H22N4O2, the tetrahydropyrimidine ring adopts an envelope conformation (with the N atom connected to the benzyl group representing the flap). This benzyl group occupies a quasi-axial position. The two benzyl groups lie over the tetrahydropyridimidine ring. The amino group is a hydrogen-bond donor to the nitro group.
Resumo:
The 1,4-dihydropyridine ring in the title hydrate, C17H18BrNO2 center dot H2O, has a flattened-boat conformation, and the benzene ring is occupies a position orthogonal to this [dihedral angle: 82.19 (16)degrees]. In the crystal packing, supramolecular arrays mediated by N-H center dot center dot center dot O-water and O-water-H center dot center dot center dot O-carbonyl hydrogen bonding are formed in the bc plane. A highly disordered solvent molecule is present within a molecular cavity defined by the organic and water molecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.
Resumo:
This paper presents a detailed analysis of a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts in an area fire situation. Lanchester linear law attrition model is used to develop the dynamical equations governing the variation in force strength. Here we address a static resource allocation problem namely, Time-Zero-Allocation (TZA) where the resource allocation is done only at the initial time. Numerical examples are given to support the analytical results.