983 resultados para Cashew nut rind ash
Resumo:
Three ash samples from an incinerator in Belo Horizonte (Brazil) were physically and chemically characterized. The chemical composition of the ashes was not always the same, neither in terms of the chemical species nor in terms of the quantities of those that are common to the three ashes. The ashes called CF1 and CF3D contain heavy metals above the detection limits of the analytical methods and the zinc concentration is high enough to justify treatment of the ashes. For these ashes, a high loss on ignition was found, indicating that the process of incineration might present failures.
Resumo:
The aim of the present study was determining the main organic acids in pulp and juices, as well as evaluating their stability, after opening the package, by liquid chromatography in a C18 column with isocratic elution and UV detection. In açaí pulp tartaric, malic and citric acids were found. Cashew samples presented all of the organic acids evaluated, besides high concentrations of ascorbic and malic acids. Acerola pulp had the highest ascorbic acid concentration. A small decrease in organic acid content during storage was observed. Malic and citric acids seem to be more stable than tartaric and ascorbic acids.
Resumo:
The aim of this work was to verify the effects of initial medium moisture content (U), addition of ammonium sulphate (N) and of potassium phosphate (P) in the production of the polygalacturonase through the solid-state fermentation, using cashew apple husk as substrate and Aspergillus niger CCT0916 as transformation agent. We also studied the best extraction conditions of the produced enzyme. The best condition of production was with U of 40%, 1% of N and 0% of P being reached an activity of the poligalacturonase of 10.1 U/g. The best extraction condition is an agitation system with a time of 100 min and a solvent-fermented medium volume ratio of 5 mL/g.
Resumo:
Fruits juices are natural sources of several compounds that present antioxidant action. Together with the fruits, they contribute with almost 40% of the antioxidant capacity in a healthy diet avoiding and preventing diseases deriving from oxidative stress. The present study determined the antioxidant capacity of seven samples of industrialized fruits juices applying CRAC (Ceric Reducing/Antioxidant Capacity) assay, a new electrochemistry assay that evaluates, by means of chronoamperometric measurements, the ability of a sample in reducing species Ce4+ in acid media. At the end of the assay was obtained the following classification: cashew > guava > grape > mango > apple > orange > passion fruit.
Resumo:
This work presents the results of morphological and physical-chemical characteristics of a sugar cane bagasse ash material sample produced under controlled burning conditions. The investigation was carried out by analyzing chemical composition, X-ray diffraction, 29Si nuclear magnetic resonance, morphology, thermal analysis, particle size, specific surface, and density. Moreover, the pozzolanic activity of the ash was evaluated by pozzolanic activity index and Chapelle's method. The results suggest that the sugar cane bagasse ash has adequate properties to be used as pozzolan in construction materials.
Resumo:
The rice husk combustion in a bubbling and atmospheric fluidized bed reactor was investigated. This paper presents the rice husk ash characterization employing the techniques of X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM) among others. After combustion, a rice husk ash containing 93% amorphous silica and <3% unburned char was produced. Methods usually applied to fixed bed considering external sources of energy and high reaction times were employed. Thus, the potential of this type of reactors with respect to speed, continuity and self-sufficiency energy of the process was shown.
Resumo:
The removal study was conducted using 1.00 g of the rice husk ash (RHA) and 20.0 mL solution with concentrations in the range of 10-1000 mg/L of Zn(II). The influence of contact time, initial metal concentration, agitation and pH of the removal process was investigated. Superior removals to 95% were obtained at the end of 24 h of contact. The agitation increased in 20% the removal of Zn(II), being needed only 5 min to reach the equilibrium. The adsorption process was studied by the models of isotherms of Langmuir, Freundlich and BET, obtaining results of R L and 1/n for a process favorable of adsorption. BET isotherm best represents the equilibrium adsorption. The results showed that the RHA has the largest capacity and affinity for the removal of Zn(II).
Resumo:
This work describes methods for the simultaneous determination of Cd and Pb by graphite furnace atomic absorption spectrometry and As by hydride generation atomic absorption spectrometry in Brazilian nuts. The samples (~ 0.300 g) were digested to clear solutions in a closed vessel microwave oven. The pyrolysis and atomization temperatures for simultaneous determinations of Cd and Pb were 1100 and 2100 °C, respectively, using 0.5% (w v-1) NH4H2PO4 + 0.03% (w v-1) Mg(NO3)2 as chemical modifier. The limits of detection (3Δ) were 3.8 μg kg-1 for As, 0.86 μg kg-1 for Cd and 13 μg kg-1 for Pb. The reliability of the entire procedures was confirmed by peach leaves (No. 1547 - NIST) certified reference material analysis and addition and recovery tests. The found concentrations presented no statistical differences at the 95% confidence level.
Resumo:
In this work, a methodology for the characterization of sugar cane bagasse was validated. Bagasse pre-treated with steam in a 5000 L reactor at a pressure of 15.3 kgf/cm², during 7 min, was used to test the methodology. The methodology consisted of the hydrolysis of the material with H2SO4 at 72% v/v, for the quantification of carbohydrates, organic acid, furfural and hydroxymethylfurfural by HPLC; insoluble lignin and ash by gravimetry; and soluble lignin by spectrophotometry. Linearity, repeatability, reproducibility and accuracy of the results obtained in two Research Laboratories were determined, and were considered to be suitable for the validation of the methodology.
Resumo:
The metal ions removal on cashew bagasse, a low-cost material, has been studied by batch adsorption. The parameters chemical treatment, particle size, biosorbent concentration, and initial pH were studied. In this study the maximum ions removal was obtained on the cashew bagasse treated with 0.1 mol/L NaOH/3 h, at optimum particle size (20-59 mesh), biosorbent concentration (50 g/L) and initial solution pH 5. The kinetic study indicated that the adsorption metal follows pseudo-second order model for a multielementary system and equilibrium time was achieved in 60 min for all metal ions.
Resumo:
Industrial hazardous wastes must receive appropriate treatment to ensure a safe disposal to humans and environment. One of the techniques adopted for this purpose is the stabilization/solidification in polymer matrices. This paper evaluated the use of recycled polyethylene terephthalate as an incorporation matrix of incinerator ash. The polymer and the ash were submitted to an extrusion process in different percentages. The final product was evaluated through thermal and leaching tests and the leachate extracts constituents were determinated by atomic absorption spectrophotometry. The results showed a reduction in the release of substances up to 99% by mass for the conditions used.
Resumo:
Coal fly ash, a waste generated in a coal-fired electric power plant, was used to synthesize zeolite by hydrothermal treatment with NaOH solution. This zeolite was used as adsorbent to investigate the adsorption kinetics and isotherm parameters of the reactive orange 16 (RO16) dye from aqueous solutions at different concentrations (1.3-15.4 mg L-1). Three kinetic models, the pseudo-first-order, second-order, and intraparticle diffusion were used to predict the adsorption rate constants. The kinetics of adsorption of the RO16 dye followed pseudo-second-order kinetics. The adsorption isotherm data were closely fitted to the Langmuir equation. Keywords: coal fly ash; zeolite; reactive dye adsorption.
Resumo:
For this study, magnetic composite of zeolite-magnetite was prepared by mixing magnetite nanoparticles suspension with synthetic zeolite. The nanoparticles in suspension were synthesized by precipitating iron ions in a NaOH solution. The zeolite was synthesized from coal fly ash by alkaline hydrothermal treatment. The magnetic composite was characterized by XDR, SEM, magnetization measurements, IR, and BET surface area. Batch tests were carried out to investigate the adsorption of metal ions of Zn2+, Cd2+ and Pb2+ from aqueous solution onto magnetic composite. Adsorption isotherms were analyzed using Freundlich and Langmuir equations. The adsorption equilibrium data fitted well to the Langmuir equation with maximum adsorption capacities in the range of 28.5-127 mg g-1.
Resumo:
This work proposed a procedure to examine ashes produced in burning lubricating oils used in public transportation, in Teresina PI. Sulphanilic acid was added to the oil samples, which were burned at 550 °C for three hours and 650 °C for two hours. The ash solutions were analyzed by FAAS and there were significant differences in the metal contents of the waste oil produced from normal car service. The quantification limits in μg g-1 were 5.9 (Fe), 4.4 (Pb), 1.7 (Ni), 2.1 (Cu), and 1.2 (Zn). The results showed positive accuracy and precision with recoveries between 88 and 108%, and RSD lower than 10%.
Resumo:
The sulphur take an essential role in plants and it is one of the main nutrients in several metabolic processes. The dry ash oxidation, using alkaline oxidizers agent, is the simplest and most economical form for the oxidation of Organic S to sulfate in plants. The objective of this work is to propose a method for sulfur determination in plants samples using dry ash oxidation and agent oxidizers alkaline. The quantification of S-SO4(2-) in samples was accomplished by turbidimetric method. The results demonstrated that the proposed method for oxidation alkaline was appropriate.