985 resultados para Canine brucellosis
Resumo:
The characterization of proteins from Brucella spp, the causative agent of brucellosis, has been the subject of intensive research. We have described an 18-kDa cytoplasmic protein of Brucella abortus and shown the potential usefulness of this protein as an antigen for the serologic diagnosis of brucellosis. The amino acid sequence of the protein showed a low but significant homology with that of lumazine synthases. Lumazine is an intermediate product in bacterial riboflavin biosynthesis. The recombinant form of the 18-kDa protein (expressed in E. coli) folds like the native Brucella protein and has lumazine-synthase enzymatic activity. Three-dimensional analysis by X-ray crystallography of the homolog Bacillus subtilis lumazine synthase has revealed that the enzyme forms an icosahedral capsid. Recombinant lumazine synthase from B. abortus was crystallized, diffracted X rays to 2.7-Å resolution at room temperature, and the structure successfully solved by molecular replacement procedures. The macromolecular assembly of the enzyme differs from that of the enzyme from B. subtilis. The Brucella enzyme remains pentameric (90 kDa) in its crystallographic form. Nonetheless, the active sites of the two enzymes are virtually identical at the structural level, indicating that inhibitors of these enzymes could be viable pharmaceuticals across a broad species range. We describe the structural reasons for the differences in their quaternary arrangement and also discuss the potential use of this protein as a target for the development of acellular vaccines.
Resumo:
The use of bovine pericardium as a urethral patch to substitute a ventral segment of canine urethras was studied. Healing, epithelial growth, urethral permeability, fistulas, and calcification were analyzed. Thirty male mongrel dogs of medium and large size underwent resection of a ventral segment of the medial urethra measuring 2.0 x 0.5 cm, which was replaced with a bovine pericardium graft, treated with buffered glutaraldehyde and preserved in formaldehyde. Two running sutures of polygalactin 5-0 were applied, one on each side of the patch. The corpus spongiosum was closed with uninterrupted suture and the skin with interrupted suture of polygalactin 5-0. Six months later, the animals were examined and sacrificed under anesthesia. Retrograde urethrograms showed that the urethral healing was complete in six of the 30 animals, without stenosis, fistulas or dilations. Microscopic examination showed complete epithelization of these six urethras. The remaining 24 animals presented urethrocutaneous fistulas without stenosis, demonstrated by urethral catheterism using a 10-Fr plastic catheter. These data show that a successful urethral reconstruction of the penile urethra was possible in only 20% of the operated animals. Infection and leakage may be the cause of the urethrocutaneous fistulas present in 80% of cases. Further studies are necessary to determine whether such fistulas are avoidable. If they are, the bovine pericardium may well be an option in the treatment of urethral lesions in dogs.
Resumo:
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
Resumo:
Cryopreservation has an immunomodulating effect on tracheal tissue as a result of class II antigen depletion due to epithelium exfoliation. However, not all epithelium is detached. We evaluated the role of apoptosis in the remaining epithelium of 30 cryopreserved tracheal grafts. Caspase-3 immunoreactivity of tracheal epithelium was studied in canine tracheal segments cryopreserved with F12K medium, with or without subsequent storage in liquid nitrogen at -196°C for 15 days. Loss of structural integrity of tracheal mixed glands was observed in all cryopreserved tracheal segments. Caspase-3 immunoreactivity in tracheal mucosa and in mixed glands was significantly decreased, in contrast to the control group and to cryopreserved tracheal segments in which it remained high, due to the effect of storage in liquid nitrogen (P < 0.05, ANOVA and Tukey test). We conclude that apoptosis can be triggered in epithelial cells during tracheal graft harvesting even prior to cryopreservation, and although the epithelial caspase-3 immunoreactivity is reduced in tracheal cryopreservation, this could be explained by increased cell death. Apoptosis cannot be stopped during tracheal cryopreservation.
Resumo:
Fifteen symptomatic and seven asymptomatic dogs infected naturally with Leishmania chagasi were examined in order to identify the presence of parasites and changes in heart and lung. Histopathological, cytological, and immunohistochemical analyses were performed on samples of heart and lung tissues. An inflammatory reaction characterized by inflammatory mononuclear, perivascular and intermuscular infiltrates was observed in both symptomatic and asymptomatic animals on histopathological analysis of the heart. In the lung, there was thickening of the alveolar septa due to congestion, edema, inflammatory infiltrate, and fibroblast proliferation. A focal reaction was observed although a diffuse reaction was present in both groups. On cytological examination, heart and lung imprints revealed amastigotes in two symptomatic animals and heart imprints were found in 1 asymptomatic dog. Immunoperoxidase staining showed amastigotes in the lung and heart of only 1 of 6 symptomatic animals examined. Within the ethical principles and limits of this research, it can be inferred that the study of heart and lung alterations in canine visceral leishmaniasis is increasingly important for understanding the problem related to humans. Dogs with visceral leishmaniasis were a good experimental model, since infection was caused by the same agent and the animals developed clinical, pathological and immunological alterations similar to those observed in humans.
Resumo:
Hyperuricemia is associated with renal stones, not only consisting of uric acid (UrAc) but also of calcium oxalate (CaOx). Glycosaminoglycans (GAGs) are well-known inhibitors of growth and aggregation of CaOx crystals. We analyzed the effect of noncrystalline UrAc on GAG synthesis in tubular distal cells. MDCK (Madin-Darby canine kidney) cells were exposed to noncrystalline UrAc (80 µg/mL) for 24 h. GAGs were labeled metabolically and characterized by agarose gel electrophoresis. The expression of proteoglycans and cyclooxygenase 2 (COX-2) was assessed by real-time PCR. Necrosis, apoptosis and prostaglandin E2 (PGE2) were determined by acridine orange, HOESCHT 33346, and ELISA, respectively. CaOx crystal endocytosis was evaluated by flow cytometry. Noncrystalline UrAc significantly decreased the synthesis and secretion of heparan sulfate into the culture medium (UrAc: 2127 ± 377; control: 4447 ± 730 cpm) and decreased the expression of perlecan core protein (UrAc: 0.61 ± 0.13; control: 1.07 ± 0.16 arbitrary units), but not versican. Noncrystalline UrAc did not induce necrosis or apoptosis, but significantly increased COX-2 and PGE2 production. The effects of noncrystalline UrAc on GAG synthesis could not be attributed to inflammatory actions because lipopolysaccharide, as the positive control, did not have the same effect. CaOx was significantly endocytosed by MDCK cells, but this endocytosis was inhibited by exposure to noncrystalline UrAc (control: 674.6 ± 4.6, CaOx: 724.2 ± 4.2, and UrAc + CaOx: 688.6 ± 5.4 geometric mean), perhaps allowing interaction with CaOx crystals. Our results indicate that UrAc decreases GAG synthesis in MDCK cells and this effect could be related to the formation of UrAc and CaOx stones.
Resumo:
The epithelial-mesenchymal transition (EMT) is involved in neoplastic metastasis, and the RON protein may be involved. In the present study, we determined the role and the mechanisms of action of RON in EMT in Madin-Darby canine kidney (MDCK) cells by Western blot and cell migration analysis. Activation of RON by macrophage stimulating protein (MSP) results in cell migration and initiates changes in the morphology of RON-cDNA-transfected MDCK cells. The absence of E-cadherin, the presence of vimentin and an increase in Snail were observed in RE7 cells, which were derived from MDCK cells transfected with wt-RON, compared with MDCK cells. Stimulation of RE7 cells with MSP resulted in increased migration (about 69% of the wounded areas were covered) as well as increased activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and glycogen synthase kinase-3β (GSK-3β; the percent of the activation ratio was 143.6/599.8% and 512.4%, respectively), which could be inhibited with an individual chemical inhibitor PD98059 (50 μM) specific to MAPK/ERK kinase (the percent inhibition was 98.9 and 81.2%, respectively). Thus, the results indicated that RON protein could mediate EMT in MDCK cells via the Erk1/2 pathway. Furthermore, GSK-3β regulates the function of Snail in controlling EMT by this pathway.
Resumo:
We compared two electroretinography (ERG) electrodes in dogs using ERG standards of the International Society for Clinical Electrophysiology of Vision (ISCEV). Ten healthy Yorkshire terrier dogs (mean age, 2.80 ± 1.42 years; 6 females) weighing 5.20 ± 1.56 kg were evaluated using an ERG system for veterinary use. Dark- and light-adapted ERG responses were recorded using an ERG-Jet electrode and a fiber electrode prototype. The examinations were performed during 2 visits, 3 weeks apart. Both electrodes (ERG-Jet or fiber prototype) were used on each animal and the first eye to be recorded (OD × OS) was selected randomly. Three weeks later the examination was repeated on the same animal switching the type of electrode to be used that day and the first eye to be examined. The magnitude and waveform quality obtained with the two electrode types were similar for all ERG responses. ERG amplitudes and implicit times obtained from dogs using the fiber electrode prototype were comparable to those obtained with the ERG-Jet electrode for rod, maximal rod-cone summed, cone, and 30-Hz flicker responses. The fiber electrode prototype is a low-cost device, available as an alternative instrument for clinical veterinary ERG recording for retinal function assessment.
Resumo:
In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs.
Resumo:
1932/04 (N2).
Resumo:
1932/12 (N6).
Resumo:
1932/10 (N5).
Resumo:
1932/06 (N3).
Resumo:
1933/02 (N1).
Resumo:
1932/08 (N4).