912 resultados para Canadian Cordillera
Resumo:
Test results reported on several natural sensitive soils show significant anisotropy of the yield curves, which are generally oriented along the coefficient of earth pressure at rest (K-0) axis. An attempt is made in this paper to explain the anisotropy in yielding from microstructural considerations. An elliptic pore, with particle domains aligned along the periphery of the pore, and with the major axis of the pore being oriented along the direction of the in situ major principal stress, is chosen as the unit of microstructure. An analysis of forces at the interdomain contacts around the ellipse is carried out with reference to experimentally determined yield stress conditions of one soil, and a yield criteria is defined. The analysis, with the proposed yield criteria, enables one to define the complete yield curve for any other soil from the results of only two tests (one constant eta compression test with eta close to eta(K?0), where eta is the stress ratio (= q/p) and eta(K?0) is the stress ratio corresponding to anisotropic K-0 compression, and another undrained shear test). Predicted yield curves are compared with experimental yield curves of several soils reported in the literature.
Resumo:
The late twentieth century witnessed the transformation of the global economy beyond the fixed geographic boundaries of the nation-state system to one dominated by financial centers, global markets, and transnational firms. In the two decades to 2011, cross-border philanthropy from OECD Development Assistance Committee (DAC) donor countries to the developing world grew from approximately USD 5 billion to USD 32 billion (OECD, n.d.),[1] with some estimates for 2011 as high as USD 59 billion (Center for Global Prosperity, 2013). This is only part of cross-border philanthropy, which also includes remittances from migrant communities, social-media-enabled global fundraising, and medical research collaborations.
Resumo:
In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T-max and T-min) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables Such as air temperature, zonal and meridional wind velocities at 925 nib which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to Study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T-max and T-min
Resumo:
The potential energy surfaces of the HCN<->HNC and LiCN<->LiNC isomerization processes were determined by ab initio theory using fully optimized triple-zeta double polarization types of basis sets. Both the MP2 corrections and the QCISD level of calculations were performed to correct for the electron correlation. Results show that electron correlation has a considerable influence on the energetics and structures. Analysis of the intramolecular bond rearrangement processes reveals that, in both cases, H (or Li+) migrates in an almost elliptic path in the plane of the molecule. In HCN<->HNC, the migrating hydrogen interacts with the in-plane pi,pi* orbitals of CN, leading to a decrease in the C-N bond order. In LiCN<->LiNC, Li+ does not interact with the corresponding pi,pi* orbitals of CN.
Resumo:
In a continuation of the authors' recent work, the ultimate tip resistance of a miniature cone using triaxial equipment was determined for samples of dry sand mixed with dry fly ash. The effect of (i) the proportion of fly ash, (ii) the relative density of samples, and (iii) the vertical overburden pressure was examined. It was noted that an addition of fly ash in sand for the same range of relative density leads to a significant reduction in the ultimate tip resistance of the cone (q(cu)). This occurs due to a decrease in the friction angle (phi) of the sample with an increase in the fly ash content for a given relative density. For phi greater than about 30 degrees, two widely used correlation curves from published literature, providing the relationships between q(cu) and phi for cohesionless soils, were found to provide satisfactory predictions, even for sand - fly ash mixtures. As was expected, the values of qcu increase continuously with an increase in the relative density of the soil mass and the vertical effective ( overburden) stress on the sample.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual's previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag-recapture data and tag-recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
The growth of the Australian eastern king prawn (Melicertus plebejus) is understood in greater detail by quantifying the latitudinal effect. The latitudinal effect is the change in the species' growth rate during migration. Mark-recapture data (N = 1635, latitude 22.21 degrees S-34.00 degrees S) presents northerly movement of the eastern king prawn, with New South Wales prawns showing substantial average movement of 140 km (standard deviation: 176 km) north. A generalized von Bertalanffy growth model framework is used to incorporate the latitudinal effect together with the canonical seasonal effect. Applying this method to eastern king prawn mark-recapture data guarantees consistent estimates for the latitudinal and seasonal effects. For M. plebejus, it was found that growth rate peaks on 25 and 29 January for males and females, respectively; is at a minimum on 27 and 31 July, respectively; and that the shape parameter, k (per year), changes by -0.0236 and -0.0556 every 1 degree of latitude south increase for males and females, respectively.
Resumo:
The Fabens method is commonly used to estimate growth parameters k and l infinity in the von Bertalanffy model from tag-recapture data. However, the Fabens method of estimation has an inherent bias when individual growth is variable. This paper presents an asymptotically unbiassed method using a maximum likelihood approach that takes account of individual variability in both maximum length and age-at-tagging. It is assumed that each individual's growth follows a von Bertalanffy curve with its own maximum length and age-at-tagging. The parameter k is assumed to be a constant to ensure that the mean growth follows a von Bertalanffy curve and to avoid overparameterization. Our method also makes more efficient use nf thp measurements at tno and recapture and includes diagnostic techniques for checking distributional assumptions. The method is reasonably robust and performs better than the Fabens method when individual growth differs from the von Bertalanffy relationship. When measurement error is negligible, the estimation involves maximizing the profile likelihood of one parameter only. The method is applied to tag-recapture data for the grooved tiger prawn (Penaeus semisulcatus) from the Gulf of Carpentaria, Australia.
Resumo:
Estimation of von Bertalanffy growth parameters has received considerable attention in fisheries research. Since Sainsbury (1980, Can. J. Fish. Aquat. Sci. 37: 241-247) much of this research effort has centered on accounting for individual variability in the growth parameters. In this paper we demonstrate that, in analysis of tagging data, Sainsbury's method and its derivatives do not, in general, satisfactorily account for individual variability in growth, leading to inconsistent parameter estimates (the bias does not tend to zero as sample size increases to infinity). The bias arises because these methods do not use appropriate conditional expectations as a basis for estimation. This bias is found to be similar to that of the Fabens method. Such methods would be appropriate only under the assumption that the individual growth parameters that generate the growth increment were independent of the growth parameters that generated the initial length. However, such an assumption would be unrealistic. The results are derived analytically, and illustrated with a simulation study. Until techniques that take full account of the appropriate conditioning have been developed, the effect of individual variability on growth has yet to be fully understood.
Resumo:
We propose a new model for estimating the size of a population from successive catches taken during a removal experiment. The data from these experiments often have excessive variation, known as overdispersion, as compared with that predicted by the multinomial model. The new model allows catchability to vary randomly among samplings, which accounts for overdispersion. When the catchability is assumed to have a beta distribution, the likelihood function, which is refered to as beta-multinomial, is derived, and hence the maximum likelihood estimates can be evaluated. Simulations show that in the presence of extravariation in the data, the confidence intervals have been substantially underestimated in previous models (Leslie-DeLury, Moran) and that the new model provides more reliable confidence intervals. The performance of these methods was also demonstrated using two real data sets: one with overdispersion, from smallmouth bass (Micropterus dolomieu), and the other without overdispersion, from rat (Rattus rattus).
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock when there is individual variability in the von Bertalanffy growth parameter L-infinity and investigate the possible bias in the estimates when the individual variability is ignored. Three methods are examined: (i) the regression method based on the Beverton and Holt's (1956, Rapp. P.V. Reun. Cons. Int. Explor. Mer, 140: 67-83) equation; (ii) the moment method of Powell (1979, Rapp. PV. Reun. Int. Explor. Mer, 175: 167-169); and (iii) a generalization of Powell's method that estimates the individual variability to be incorporated into the estimation. It is found that the biases in the estimates from the existing methods are, in general, substantial, even when individual variability in growth is small and recruitment is uniform, and the generalized method performs better in terms of bias but is subject to a larger variation. There is a need to develop robust and flexible methods to deal with individual variability in the analysis of length-frequency data.
Resumo:
In the analysis of tagging data, it has been found that the least-squares method, based on the increment function known as the Fabens method, produces biased estimates because individual variability in growth is not allowed for. This paper modifies the Fabens method to account for individual variability in the length asymptote. Significance tests using t-statistics or log-likelihood ratio statistics may be applied to show the level of individual variability. Simulation results indicate that the modified method reduces the biases in the estimates to negligible proportions. Tagging data from tiger prawns (Penaeus esculentus and Penaeus semisulcatus) and rock lobster (Panulirus ornatus) are analysed as an illustration.