982 resultados para Caecal E. coli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty Escherichia coli strains isolated primarily from neonatal meningitis, urinary tract infections and feces were screened for the presence of virulence genes with a newly developed microarray on the array tube format. A total of 32 gene probes specific for extraintestinal as well as intestinal E. coli pathotypes were included. Eighty-eight percent of the analyzed strains were positive for the K1-specific probe on the microarray and could be confirmed with a specific antiserum against the K1 capsular polysaccharide. The gene for the hemin receptor ChuA was predominantly found in 95% of strains. Other virulence genes associated with K1 and related strains were P, S, and F1C fimbriae specific for extraintestinal E. coli, the genes for aerobactin, the alpha-hemolysin and the cytotoxic necrotizing factor. In two strains, the O157-specific catalase gene and the gene for the low-molecular-weight heat-stable toxin AstA were detected, respectively. A total of 19 different virulence gene patterns were observed. No correlation was observed between specific virulence gene patterns and a clinical outcome. The data indicate that virulence genes typical of extraintestinal E. coli are predominantly present in K1 strains. Nevertheless, some of them can carry virulence genes known to be characteristic of intestinal E. coli. The distribution and combination of virulence genes show that K1 isolates constitute a heterogeneous group of E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a microarray based broad-range screening technique for Escherichia coli virulence typing. Gene probes were amplified by PCR from a plasmid bank of characterised E. coli virulence genes and were spotted onto a glass slide to form an array of capture probes. Genomic DNA from E. coli strains which were to be tested for the presence of these virulence gene sequences was labelled with fluorescent cyanine dyes by random amplification and then hybridised against the array of probes. The hybridisation, washing and data analysis conditions were optimised for glass slides, and the applicability of the method for identifying the presence of the virulence genes was determined using reference strains and clinical isolates. It was found to be a sensitive screening method for detecting virulence genes, and a powerful tool for determining the pathotype of E. coli. It will be possible to expand and automate this microarray technique to make it suitable for rapid and reliable diagnostic screening of bacterial isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on Directive (EC) No 99/2003, monitoring programs on the development of antimicrobial resistance in bacteria from livestock are implemented in many European countries. The aim of the present study was (i) to establish comprehensive baseline data on the antimicrobial resistance situation in Escherichia coli isolates obtained from healthy pigs (pooled fecal samples) originating from 60 Swiss pig-breeding farms, and (ii) to analyze differences in the resistance frequency between Escherichia coli isolates from weaned pigs and sows. Susceptibility testing (disc diffusion method) was performed on 429 isolates from weaned pigs and 431 isolates from sows. Overall, 17.7% of the isolates from weaned pigs and 22.5% of the Escherichia coli isolates from sows were susceptible to all antibiotics tested. Low resistance prevalence was found for amoxicillin, amoxicillin/clavulanic acid, ampicillin, cefquinome, ciprofloxacin, colistin, florfenicol, and gentamicin. The most frequently found resistances were against streptomycin (60.6% of the isolates from weaners and 64.3% of the isolates from sows), sulfonamide (51.5% and 26.9%), tetracycline (35.2% and 22.0%), and trimethoprim (27.5% and 11.1%). With exception of colistin, most resistances were found for those antibiotics commonly used on the farms. Except for ciprofloxacin and streptomycin, isolates from weaned pigs showed higher resistance prevalence than those from sows. This difference was significant for cefquinome, florfenicol, sulfonamide, tetracycline, and trimethoprim (p<0.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli can be due to the production of ESBLs, plasmid-mediated AmpCs (pAmpCs) or chromosomal AmpCs (cAmpCs). Information regarding type and prevalence of β-lactamases, clonal relations and plasmids associated with the bla genes for ESC-R E. coli (ESC-R-Ec) detected in Switzerland is lacking. Moreover, data focusing on patients referred to the specialized outpatient clinics (SOCs) are needed. METHODS We analysed 611 unique E. coli isolated during September-December 2011. ESC-R-Ec were studied with microarrays, PCR/DNA sequencing for blaESBLs, blapAmpCs, promoter region of blacAmpC, IS elements, plasmid incompatibility group, and also implementing transformation, aIEF, rep-PCR and MLST. RESULTS The highest resistance rates were observed in the SOCs, whereas those in the hospital and community were lower (e.g. quinolone resistance of 22.6%, 17.2% and 9.0%, respectively; P = 0.003 for SOCs versus community). The prevalence of ESC-R-Ec in the three settings was 5.3% (n = 11), 7.8% (n = 22) and 5.7% (n = 7), respectively. Thirty isolates produced CTX-M ESBLs (14 were CTX-M-15), 5 produced CMY-2 pAmpC and 5 hyper-expressed cAmpCs due to promoter mutations. Fourteen isolates were of sequence type 131 (ST131; 10 with CTX-M-15). blaCTX-M and blaCMY-2 were associated with an intact or truncated ISEcp1 and were mainly carried by IncF, IncFII and IncI1plasmids. CONCLUSIONS ST131 producing CTX-M-15 is the predominant clone. The prevalence of ESC-R-Ec (overall 6.5%) is low, but an unusual relatively high frequency of AmpC producers (25%) was noted. The presence of ESC-R-Ec in the SOCs and their potential ability to be exchanged between hospital and community should be taken into serious consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Escherichia coli is a common cause of asymptomatic and symptomatic bacteriuria in hospitalized patients. Asymptomatic bacteriuria (ASB) is frequently treated with antibiotics without a clear indication. Our goal was to determine patient and pathogen factors suggestive of ASB. Methods We conducted a 12-month prospective cohort study of adult inpatients with E. coli bacteriuria seen at a tertiary care hospital in St. Louis, Missouri, USA. Urine cultures were taken at the discretion of treating physicians. Bacterial isolates were tested for 14 putative virulence genes using high-throughput dot-blot hybridization. Results The median age of the 287 study patients was 65 (19–101) years; 78% were female. Seventy percent had community-acquired bacteriuria. One-hundred ten (38.3%) patients had ASB and 177 (61.7%) had symptomatic urinary tract infection (sUTI). Asymptomatic patients were more likely than symptomatic patients to have congestive heart failure (p = 0.03), a history of myocardial infarction (p = 0.01), chronic pulmonary disease (p = 0.045), peripheral vascular disease (p = 0.04), and dementia (p = 0.03). Patients with sUTI were more likely to be neutropenic at the time of bacteriuria (p = 0.046). Chronic pulmonary disease [OR 2.1 (95% CI 1.04, 4.1)] and dementia [OR 2.4 (95% CI 1.02, 5.8)] were independent predictors for asymptomatic bacteriuria. Absence of pyuria was not predictive of ASB. None of the individual virulence genes tested were associated with ASB nor was the total number of genes. Conclusions Asymptomatic E. coli bacteriuria in hospitalized patients was frequent and more common in patients with dementia and chronic pulmonary disease. Bacterial virulence factors could not discriminate symptomatic from asymptomatic bacteriurias. Asymptomatic E. coli bacteriuria cannot be predicted by virulence screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing trends for invasive infections with extended-spectrum cephalosporin-resistant (ESC-R) Enterobacteriaceae have been described in many countries worldwide. However, data on the rates of ESC-R isolates in non-invasive infections and in the outpatient setting are scarce. We used a laboratory-based nationwide surveillance system to compare temporal trends of ESC-R rates in Escherichia coli and Klebsiella pneumoniae for in- and outpatients in Switzerland. Our data showed a significant increase in ESC-R rates from 1% to 5.8% in E. coli (p<0.001) and from 1.1% to 4.4% in K. pneumoniae (p=0.002) during an eight-year period (2004–2011). For E. coli, the increase was significantly higher in inpatients (from 1.2% to 6.6%), in patients residing in eastern Switzerland (from 1.0% to 6.2%), in patients older than 45 years (from 1.2% to 6.7%), and in male patients (from 1.2% to 8.1%). While the increase in inpatients was linear (p<0.001) for E. coli, the increase of ESC R K. pneumoniae isolates was the result of multiple outbreaks in several institutions. Notably, an increasing proportion of ESC-R E. coli was co-resistant to both trimethoprim-sulfamethoxazole and quinolones (42% in 2004 to 49.1% in 2011, p=0.009), further limiting the available oral therapeutic options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell division or cytokinesis is one of the most fundamental processes in biology and is essential for the propagation of all living species. In Escherichia coli, cell division occurs by ingrowth of the membrane envelope at the cell center and is orchestrated by the FtsZ protein. FtsZ self-assembles into linear protofilaments in a GTP dependent manner to form a cytoskeletal scaffold called the Z-ring. The Z-ring provides the framework for the assembly of the division apparatus and determines the site of cytokinesis. The total amount of FtsZ molecules in a cell significantly exceeds the concentration required for Z-ring formation. Hence, Z-ring formation must be highly regulated, both temporally and spatially. In particular, the assembly of Z-rings at the cell poles and over chromosomal DNA must be prevented. These inhibitory roles are played by two key regulatory systems called the Min and nucleoid occlusion (NO) systems. In E. coli, Min proteins oscillate from pole to pole; the net result of this oscillatory process is the formation of a zone of FtsZ inhibition at the cell poles. However, the replicated nucleoid DNA near the midcell must also be protected from bisection by the Z-ring which is ensured by NO. A protein called SlmA was shown to be the effector of NO in E. coli. SlmA was identified in a screen designed to isolate mutations that were lethal in the absence of Min, hence the name SlmA (synthetic lethal with a defective Min system). Furthers SlmA was shown to bind DNA and localize to the nucleoid fraction of the cell. Additionally, light scattering experiments suggested that SlmA interacts with FtsZ-GTP and alters its polymerization properties. Here we describe studies that reveal the molecular mechanism by which SlmA mediates NO in E. coli. Specifically, we determined the crystal structure of SlmA, identified its DNA binding site specificity, and mapped its binding sites on the E. coli chromosome by chromatin immuno-precipitation experiments. We went on to determine the SlmA-FtsZ structure by small angle X-ray scattering and examined the effect of SlmA-DNA on FtsZ polymerization by electron microscopy. Our combined data show how SlmA is able to disrupt Z-ring formation through its interaction with FtsZ in a specific temporal and spatial manner and hence prevent nucleoid guillotining during cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhea among children, human immunodeficiency virus-infected patients, and travelers to developing regions of the world. The pathogenesis of EAEC strains involves the production of biofilm. In this study, we determined the association between presence of putative EAEC virulence genes and biofilm formation in 57 EAEC isolates (as defined by HEp-2 adherence) from travelers with diarrhea and in 18 EAEC isolates from travelers without diarrhea. Twelve nondiarrheagenic E. coli isolates from healthy travelers were used as controls. Biofilm formation was measured by using a microtiter plate assay with the crystal violet staining method, and the presence of the putative EAEC virulence genes aap, aatA, aggR, astA, irp2, pet, set1A, and shf was determined by PCR. EAEC isolates were more likely to produce biofilm than nondiarrheagenic E. coli isolates (P = 0.027), and the production of biofilm was associated with the virulence genes aggR, set1A, aatA, and irp2, which were found in 16 (40%), 17 (43%), 10 (25%), and 27 (68%) of the biofilm producers versus only 4 (11%), 6 (6%), 2 (6%), and 15 (43%) in non-biofilm producers (P = 0.008 for aggR, P = 0.0004 for set1A, P = 0.029 for aatA, and P = 0.04 for irp2). Although the proportion of EAEC isolates producing biofilm in patients with diarrhea (51%) was similar to that in patients without diarrhea (61%), biofilm production was related to the carriage of aggR (P = 0.015), set1A (P = 0.001), and aatA (P = 0.025). Since aggR is a master regulator of EAEC, the presence of aap (P = 0.004), astA (P = 0.001), irp2 (P = 0.0006), pet (P = 0.002), and set1A (P = 0.014) in an aggR versus an aggR-lacking background was investigated and was also found to be associated with biofilm production. This study suggests that biofilm formation is a common phenomenon among EAEC isolates derived from travelers with or without diarrhea and that multiple genes associated with biofilm formation are regulated by aggR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylcholine (PC) has been widely used in place of naturally occurring phosphatidylethanolamine (PE) in reconstitution of bacterial membrane proteins. However, PC does not support native structure or function for several reconstituted transport proteins. Lactose permease (LacY) of Escherichia coli, when reconstituted in E. coli phospholipids, exhibits energy-dependent uphill and energy-independent downhill transport function and proper conformation of periplasmic domain P7, which is tightly linked to uphill transport function. LacY expressed in cells lacking PE and containing only anionic phospholipids exhibits only downhill transport and lacks native P7 conformation. Reconstitution of LacY in the presence of E. coli-derived PE, but not dioleoyl-PC, results in uphill transport. We now show that LacY exhibits uphill transport and native conformation of P7 when expressed in a mutant of E. coli in which PC completely replaces PE even though the structure is not completely native. E. coli-derived PC and synthetic PC species containing at least one saturated fatty acid also support the native conformation of P7 dependent on the presence of anionic phospholipids. Our results demonstrate that the different effects of PE and PC species on LacY structure and function cannot be explained by differences in the direct interaction of the lipid head groups with specific amino acid residues alone but are due to more complex effects of the physical and chemical properties of the lipid environment on protein structure. This conclusion is supported by the effect of different lipids on the proper folding of domain P7, which indirectly influences uphill transport function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large field studies of travelers' diarrhea for multiple destinations are limited by the need to perform stool cultures on site in a timely manner. A method for the collection, transport, and storage of fecal specimens that does not require immediate processing and refrigeration and that is stable for months would be advantageous. This study was designed to determine if enterotoxigenic Escherichia coli (ETEC) and enteroaggregative E. coli (EAEC) DNA could be identified from cards that were processed for the evaluation of fecal occult blood. U.S. students traveling to Mexico during 2005 to 2007 were monitored for the occurrence of diarrheal illness. When ill, students provided a stool specimen for culture and occult blood by the standard methods. Cards then were stored at room temperature prior to DNA extraction. Fecal PCR was performed to identify ETEC and EAEC in DNA extracted from stools and from occult blood cards. Significantly more EAEC cases were identified by PCR that was performed on DNA that was extracted from cards (49%) or from frozen feces (40%) than from culture methods that used HEp-2 adherence assays (13%) (P < 0.001). Similarly, more ETEC cases were detected from card DNA (38%) than from fecal DNA (30%) or by culture that was followed by hybridization (10%) (P < 0.001). The sensitivity and specificity of the card test were 75 and 62%, respectively, compared to those for EAEC by culture and were 50 and 63%, respectively, compared to those for ETEC. DNA extracted from fecal cards that was used for the detection of occult blood is of use in identifying diarrheagenic E. coli.