930 resultados para COMPUTATIONAL NEURAL-NETWORKS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Type reduction (TR) is one of the key components of interval type-2 fuzzy logic systems (IT2FLSs). Minimizing the computational requirements has been one of the key design criteria for developing TR algorithms. Often researchers give more rewards to computationally less expensive TR algorithms. This paper evaluates and compares five frequently used TR algorithms based on their contribution to the forecasting performance of IT2FLS models. Algorithms are judged based on the generalization power of IT2FLS models developed using them. Synthetic and real world case studies with different levels of uncertainty are considered to examine effects of TR algorithms on forecasts' accuracies. As per obtained results, Coupland-Jonh TR algorithm leads to models with a higher and more stable forecasting performance. However, there is no obvious and consistent relationship between the widths of the type reduced set and the TR algorithm. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metaheuristic algorithm is one of the most popular methods in solving many optimization problems. This paper presents a new hybrid approach comprising of two natures inspired metaheuristic algorithms i.e. Cuckoo Search (CS) and Accelerated Particle Swarm Optimization (APSO) for training Artificial Neural Networks (ANN). In order to increase the probability of the egg’s survival, the cuckoo bird migrates by traversing more search space. It can successfully search better solutions by performing levy flight with APSO. In the proposed Hybrid Accelerated Cuckoo Particle Swarm Optimization (HACPSO) algorithm, the communication ability for the cuckoo birds have been provided by APSO, thus making cuckoo bird capable of searching for the best nest with better solution. Experimental results are carried-out on benchmarked datasets, and the performance of the proposed hybrid algorithm is compared with Artificial Bee Colony (ABC) and similar hybrid variants. The results show that the proposed HACPSO algorithm performs better than other algorithms in terms of convergence and accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For a Digital Performing Agent to be able to perform live with a human dancer, it would be useful for the agent to be able to contextualize the movement the dancer is performing and to have a suitable movement vocabulary with which to contribute to the performance. In this paper we will discuss our research into the use of Artificial Neural Networks (ANN) as a means of allowing a software agent to learn a shared vocabulary of movement from a dancer. The agent is able to use the learnt movements to form an internal representation of what the dancer is performing, allowing it to follow the dancer, generate movement sequences based on the dancer's current movement and dance independently of the dancer using a shared movement vocabulary. By combining the ANN with a Hidden Markov Model (HMM) the agent is able to recognize short full body movement phrases and respond when the dancer performs these phrases. We consider the relationship between the dancer and agent as a means of supporting the agent's learning and performance, rather than developing the agent's capability in a self-contained fashion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uncertainty of the electricity prices makes the task of accurate forecasting quite difficult for the electricity market participants. Prediction intervals (PIs) are statistical tools which quantify the uncertainty related to forecasts by estimating the ranges of the future electricity prices. Traditional approaches based on neural networks (NNs) generate PIs at the cost of high computational burden and doubtful assumptions about data distributions. In this work, we propose a novel technique that is not plagued with the above limitations and it generates high-quality PIs in a short time. The proposed method directly generates the lower and upper bounds of the future electricity prices using support vector machines (SVM). Optimal model parameters are obtained by the minimization of a modified PI-based objective function using a particle swarm optimization (PSO) technique. The efficiency of the proposed method is illustrated using data from Ontario, Pennsylvania-New Jersey-Maryland (PJM) interconnection day-ahead and real-time markets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prediction interval (PI) has been extensively used to predict the forecasts for nonlinear systems as PI-based forecast is superior over point-forecast to quantify the uncertainties and disturbances associated with the real processes. In addition, PIs bear more information than point-forecasts, such as forecast accuracy. The aim of this paper is to integrate the concept of informative PIs in the control applications to improve the tracking performance of the nonlinear controllers. In the present work, a PI-based controller (PIC) is proposed to control the nonlinear processes. Neural network (NN) inverse model is used as a controller in the proposed method. Firstly, a PI-based model is developed to construct PIs for every sample or time instance. The PIs are then fed to the NN inverse model along with other effective process inputs and outputs. The PI-based NN inverse model predicts the plant input to get the desired plant output. The performance of the proposed PIC controller is examined for a nonlinear process. Simulation results indicate that the tracking performance of the PIC is highly acceptable and better than the traditional NN inverse model-based controller.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Starting from the idea that economic systems fall into complexity theory, where its many agents interact with each other without a central control and that these interactions are able to change the future behavior of the agents and the entire system, similar to a chaotic system we increase the model of Russo et al. (2014) to carry out three experiments focusing on the interaction between Banks and Firms in an artificial economy. The first experiment is relative to Relationship Banking where, according to the literature, the interaction over time between Banks and Firms are able to produce mutual benefits, mainly due to reduction of the information asymmetry between them. The following experiment is related to information heterogeneity in the credit market, where the larger the bank, the higher their visibility in the credit market, increasing the number of consult for new loans. Finally, the third experiment is about the effects on the credit market of the heterogeneity of prices that Firms faces in the goods market.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this dissertation, different ways of combining neural predictive models or neural-based forecasts are discussed. The proposed approaches consider mostly Gaussian radial basis function networks, which can be efficiently identified and estimated through recursive/adaptive methods. Two different ways of combining are explored to get a final estimate – model mixing and model synthesis –, with the aim of obtaining improvements both in terms of efficiency and effectiveness. In the context of model mixing, the usual framework for linearly combining estimates from different models is extended, to deal with the case where the forecast errors from those models are correlated. In the context of model synthesis, and to address the problems raised by heavily nonstationary time series, we propose hybrid dynamic models for more advanced time series forecasting, composed of a dynamic trend regressive model (or, even, a dynamic harmonic regressive model), and a Gaussian radial basis function network. Additionally, using the model mixing procedure, two approaches for decision-making from forecasting models are discussed and compared: either inferring decisions from combined predictive estimates, or combining prescriptive solutions derived from different forecasting models. Finally, the application of some of the models and methods proposed previously is illustrated with two case studies, based on time series from finance and from tourism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The artificial lifting of oil is needed when the pressure of the reservoir is not high enough so that the fluid contained in it can reach the surface spontaneously. Thus the increase in energy supplies artificial or additional fluid integral to the well to come to the surface. The rod pump is the artificial lift method most used in the world and the dynamometer card (surface and down-hole) is the best tool for the analysis of a well equipped with such method. A computational method using Artificial Neural Networks MLP was and developed using pre-established patterns, based on its geometry, the downhole card are used for training the network and then the network provides the knowledge for classification of new cards, allows the fails diagnose in the system and operation conditions of the lifting system. These routines could be integrated to a supervisory system that collects the cards to be analyzed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)