949 resultados para COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between spot volume and variation for all protein spots observed on large format 2D gels when utilising silver stain technology and a model system based on mammalian NSO cell extracts is reported. By running multiple gels we have shown that the reproducibility of data generated in this way is dependent on individual protein spot volumes, which in turn are directly correlated with the coefficient of variation. The coefficients of variation across all observed protein spots were highest for low abundant proteins which are the primary contributors to process error, and lowest for more abundant proteins. Using the relationship between spot volume and coefficient of variation we show it is necessary to calculate variation for individual protein spot volumes. The inherent limitations of silver staining therefore mean that errors in individual protein spot volumes must be considered when assessing significant changes in protein spot volume and not global error. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss two-dimensional failure modeling for a system where degradation is due to age and usage. We extend the concept of minimal repair for the one-dimensional case to the two-dimensional case and characterize the failures over a two-dimensional region under minimal repair. An application of this important result to a rnanufacturer's servicing costs for a two-dimensional warranty policy is given and we compare the minimal repair strategy with the strategy of replacement of failure. (C) 2003 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of watertable fluctuations in a coastal aquifer is important for coastal management. However, most previous approaches have based on the one-dimensional Boussinesq equation, neglecting variations in the coastline and beach slope. In this paper, a closed-form analytical solution for a two-dimensional unconfined coastal aquifer bounded by a rhythmic coastline is derived. In the new model, the effect of beach slope is also included, a feature that has not been considered in previous two-dimensional approximations. Three small parameters, the shallow water parameter (epsilon), the amplitude parameter (a) and coastline parameter (beta) are used in the perturbation approximation. The numerical results demonstrate the significant influence of both the coastline shape and beach slopes on tide-driven coastal groundwater fluctuations. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t-J(')-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbor antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction J(') increases the attraction between electrons in the d(xy) channel only, so that both charge and spin fluctuations work cooperatively to produce d(xy) pairing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For repairable items, the manufacturer has the option to either repair or replace a failed item that is returned under warranty. In this paper, we look at a new warranty servicing strategy for items sold with two-dimensional warranty where the failed item is replaced by a new one when it fails for the first time in a specified region of the warranty and all other failures are repaired minimally. The region is characterised by two parameters and we derive the optimal values for these to minimise the total expected warranty servicing cost. We compare the results with other repair-replace strategies reported in the literature. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical process parameter for mineral separation is the degree of mineral liberation achieved by comminution. The degree of liberation provides an upper limit of efficiency for any physical separation process. The standard approach to measuring mineral liberation uses mineralogical analysis based two-dimensional sections of particles which may be acquired using a scanning electron microscope and back-scatter electron analysis or from an analysis of an image acquired using an optical microscope. Over the last 100 years, mathematical techniques have been developed to use this two dimensional information to infer three-dimensional information about the particles. For mineral processing, a particle that contains more than one mineral (a composite particle) may appear to be liberated (contain only one mineral) when analysed using only its revealed particle section. The mathematical techniques used to interpret three-dimensional information belong, to a branch of mathematics called stereology. However methods to obtain the full mineral liberation distribution of particles from particle sections are relatively new. To verify these adjustment methods, we require an experimental method which can accurately measure both sectional and three dimensional properties. Micro Cone Beam Tomography provides such a method for suitable particles and hence, provides a way to validate methods used to convert two-dimensional measurements to three dimensional estimates. For this study ore particles from a well-characterised sample were subjected to conventional mineralogical analysis (using particle sections) to estimate three-dimensional properties of the particles. A subset of these particles was analysed using a micro-cone beam tomograph. This paper presents a comparison of the three-dimensional properties predicted from measured two-dimensional sections with the measured three-dimensional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Erratum, we point out the reason for an error in the derivation of a result in our earlier paper, “Two-Dimensional Failure Modeling with Minimal Repair” [1], which appeared in the April 2004 issue of this journal, 51:3, on pages 345–362, and give the correct derivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O–H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0–41 min, a decrease in the broad band around 3390 cm−1 was observed, indicating that bulk water was evaporated. In the drying time range of 49–195 min, decreases in the bands at 3412, 3344 and 3286 cm−1 assigned to the O6H6cdots, three dots, centeredO3′ interchain hydrogen bonds (H-bonds), the O3H3cdots, three dots, centeredO5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6cdots, three dots, centeredO3′ interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6cdots, three dots, centeredO3′ interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2-D) strain (epsilon(2-D)) on the basis of speckle tracking is a new technique for strain measurement. This study sought to validate epsilon(2-D) and tissue velocity imaging (TVI)based strain (epsilon(TVI)) with tagged harmonic-phase (HARP) magnetic resonance imaging (MRI). Thirty patients (mean age. 62 +/- 11 years) with known or suspected ischemic heart disease were evaluated. Wall motion (wall motion score index 1.55 +/- 0.46) was assessed by an expert observer. Three apical images were obtained for longitudinal strain (16 segments) and 3 short-axis images for radial and circumferential strain (18 segments). Radial epsilon(TVI) was obtained in the posterior wall. HARP MRI was used to measure principal strain, expressed as maximal length change in each direction. Values for epsilon(2-D), epsilon(TVI), and HARP MRI were comparable for all 3 strain directions and were reduced in dysfunctional segments. The mean difference and correlation between longitudinal epsilon(2-D) and HARP MRI (2.1 +/- 5.5%, r = 0.51, p < 0.001) were similar to those between longitudinal epsilon(TVI), and HARP MRI (1.1 +/- 6.7%, r = 0.40, p < 0.001). The mean difference and correlation were more favorable between radial epsilon(2-D) and HARP MRI (0.4 +/- 10.2%, r = 0.60, p < 0.001) than between radial epsilon(TVI), and HARP MRI (3.4 +/- 10.5%, r = 0.47, p < 0.001). For circumferential strain, the mean difference and correlation between epsilon(2-D) and HARP MRI were 0.7 +/- 5.4% and r = 0.51 (p < 0.001), respectively. In conclusion, the modest correlations of echocardiographic and HARP MRI strain reflect the technical challenges of the 2 techniques. Nonetheless, epsilon(2-D) provides a reliable tool to quantify regional function, with radial measurements being more accurate and feasible than with TVI. Unlike epsilon(TVI), epsilon(2-D) provides circumferential measurements. (c) 2006 Elsevier Inc. All rights reserved.