963 resultados para COMPOSITE MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small low air-speed wind turbine blade case study is used to demonstrate the effectiveness of a materials and design selection methodology described by Monroy Aceves et al. (2008) [24] for composite structures. The blade structure comprises a shell of uniform thickness and a unidirectional reinforcement. The shell outer geometry is fixed by aerodynamic considerations. A wide range of lay-ups are considered for the shell and reinforcement. Structural analysis is undertaken using the finite element method. Results are incorporated into a database for analysis using material selection software. A graphical selection stage is used to identify the lightest blade meeting appropriate design constraints. The proposed solution satisfies the design requirements and improves on the prototype benchmark by reducing the mass by almost 50%. The flexibility of the selection software in allowing identification of trends in the results and modifications to the selection criteria is demonstrated. Introducing a safety factor of two on the material failure stresses increases the mass by only 11%. The case study demonstrates that the proposed design methodology is useful in preliminary design where a very wide range of cases should be considered using relatively simple analysis. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of multi-walled carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. In particular, we examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon fibre-epoxy composite square honeycombs, and the parent composite material, were tested in quasi-static compression at a strain rate of 10 -3 s -1 and in dynamic compression at strain rates of 10 3-10 4 s -1 using an instrumented Kolsky bar arrangement. Taken together, these tests provide an assessment of the potential of this composite topology for use as a lightweight sandwich core. The honeycombs had two relative densities, 0.12 and 0.24, and two material orientations, ±45° and 0/90° with respect to the prismatic, loading direction of the honeycomb. Honeycomb manufacture was by slotting, assembling and bonding together carbon fibre/epoxy woven plies of composite sheets of 2 × 2 twill weave construction. The peak value of wall stress in the honeycombs was about one third that of the parent material, for all strain rates. An elastic finite element analysis was used to trace the source of this knock-down in strength: a stress concentration exists at the root of the slots and leads to premature failure by microbuckling. Shock-wave effects were evident at impact velocities exceeding 50 ms -1 for the honeycomb of relative density 0.12. This was traced to stubbing of the buckled cell walls against the face of the Kolsky bar. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive behaviour of finite unidirectional composites with a region of misaligned reinforcement is investigated via finite element analyses. Models with and without fibre bending stiffness are compared, confirming that compressive strength is accurately predicted without modelling fibre bending stiffness for real composite components which typically have waviness defects of several millimetres wavelength. Various defect parameters are investigated. Results confirm the well-known sensitivity of compressive strength to misalignment angle, and also show that compressive strength falls rapidly with the proportion of laminate width covered by the wavy region. A simple empirical equation is proposed to model the effect of a single patch of waviness in finite specimens. Other parameters such as length and position of the wavy region are found to have a smaller effect on compressive strength. The modelling approach is finally adapted to model distributed waviness and thus determine the compressive strength of composites with realistic waviness defects. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal membranes consist of 10 distinct layers including components of amnion, chorion and decidua, the latter being of maternal origin. They form mechanically integrated sheets capable of retaining amniotic fluid and play an essential role in protecting fetal growth and development in the pregnant uterus. The extracellular matrix, substrate for plasminogen activators (PAs), is an important supportive framework of the fetal membranes. :Fetal membranes from women with preterm premature rupture of membranes may differ in their protease activity compared with normal membranes. To identify the presence of PAs and their inhibitors (PAI) and their possible role in the process of fetal membrane rupture, this study in investigated the distribution and localization of both protein and mRNA for tissue (t) and urokinase (u) PA and their inhibitors type 1 (PAI-1) and type 2 (PAI-2) in amniochorion of human and rhesus monkey using conventional and. confocal immunofluorescence microscopy. In situ hybridization analysis showed that the distribution and localization of mRNAs for tPA, uPA, PAI-I and PAI-2 were similar in the fetal membranes of human and rhesus monkey; no obvious species difference was observed. Evidence of tPA mRNA was detected in amniotic epithelium, trophoblast cells and nearly all cells of the decidual layer. Strong expression of uPA mRNA was noted in the decidual cells which increased in intensity as the abscission point was approached. Weak staining in chorion laeve trophoblast was also detected. In situ hybridization experiments showed PAI-1 mRNA to be concentrated mainly in the decidual cells, some of which were interposed into the maternal-facing edge of the chorion laeve. Maximal labelling of the decidua occurred towards the zone of abscission. Weak expression of PAI-1 mRNA nas also noted in some cells of the chorion laeve. The distribution of PAI-2 mRNA in amniochorion was also concentrated in the cells of the decidual layer, maximum expression of the mRNA was in the level of abscission. No detectable amount of mRNAs for tPA, uPA, PAI-1 and PAI-2 was found in the fibroblast, reticular and spongy layers. Distribution of the proteins of tPA, uPA and PAI-1 in the fetal membranes of these two species was consistent with the distribution of their mRNA. Anti-PAI-2 immunofluorescence was found to be strongly concentrated in the amniotic epithelium, but PAI-2 mRNA was negative in this layer, suggesting that the epithelium-associated PAI-2 is not of epithelial origin. These findings suggest that a local fibrinolysis in fetal membranes generated by precisely balanced expression of PAs and their inhibitors via paracrine or autocrine mechanisms may play an essential role in fetal membrane development, maturation and in membrane rupture. Following an analysis of the distribution and synthesis of activators and inhibitors it was found that they may play a role in abscission during the third stage of labour. (C) 1998 W. B. Saunders Company Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in functionality and reliability of carbon nanotube (CNT) composite materials require careful formulation of processing methods to ultimately realize the desired properties. To date, controlled dispersion of CNTs in a solution or a composite matrix remains a challenge, due to the strong van der Waals binding energies associated with the CNT aggregates. There is also insufficiently defined correlation between the microstructure and the physical properties of the composite. Here, we offer a review of the dispersion processes of pristine (non-covalently functionalized) CNTs in a solvent or a polymer solution. We summarize and adapt relevant theoretical analysis to guide the dispersion design and selection, from the processes of mixing/sonication, to the application of surfactants for stabilization, to the final testing of composite properties. The same approaches are expected to be also applicable to the fabrication of other composite materials involving homogeneously dispersed nanoparticles. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random fibrous networks exist in both natural biological and engineering materials. While the nonlinear deformation of fibrous networks has been extensively studied, the understanding of their fracture behaviour is still incomplete. To study the fracture toughness of fibrous materials, the near-tip region is crucial because failure mechanisms such as fibril rupture occur in this region. The consideration of this region in fracture studies is, however, a difficult task because it involves microscopic mechanical responses at a small length scale. This paper extends our previous finite element analysis by incorporating the microscopic responses into a macroscopic domain by using a submodeling technique. The detailed study of microstructures at crack tips show a stochastic toughness of membranes due to the random nature of fibrous networks. Further, the sizes of crack tip region, which are sufficient to provide a reasonable prediction of fracture behaviour in a specific type of fibrous network, were presented. Future work includes improving the current linear assumption in the macroscopic models to become nonlinear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic response of end-clamped monolithic beams and sandwich beams of equal areal mass have been measured by loading the beams at mid-span with metal foam projectiles to simulate localised blast loading. The sandwich beams were made from carbon fibre laminate and comprised identical face sheets and a square-honeycomb core. The transient deflection of the beams was determined as a function of projectile momentum, and the measured response was compared with finite element simulations based upon a damage mechanics approach. A range of failure modes were observed in the sandwich beams including core fracture, plug-type shear failure of the core, debonding of the face sheets from the core and tensile tearing of the face sheets at the supports. In contrast, the monolithic beams failed by a combination of delamination of the plies and tensile failure at the supports. The finite element simulations of the beam response were accurate provided the carbon fibre properties were endowed with rate sensitivity of damage growth. The relative performance of monolithic and sandwich beams were quantified by the maximum transverse deflection at mid-span for a given projectile momentum. It was found that the sandwich beams outperformed both monolithic composite beams and steel sandwich beams with a square-honeycomb core. However, the composite beams failed catastrophically at a lower projectile impulse than the steel beams due to the lower ductility of the composite material. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of silver nanoparticle (NP) paste films into highly conductive films at low sintering temperature is an important requirement for the developing areas of additive fabrication and printed electronics. Ag NPs with a diameter of ∼10 nm were prepared via an improved chemical process to produce viscous paste with a high wt%. The paste consisted of as-prepared Ag NP and an organic vehicle of ethylcellulose that was deposited on glass and Si substrates using a contact lithographic technique. The morphology and conductivity of the imprinted paste film were measured as a function of sintering temperature, sintering time and the percentage ratio of Ag NP and ethylcellulose. The morphology and conductivity were examined using scanning electron microscopy (SEM) and a two-point probe electrical conductivity measurement. The results show that the imprinted films were efficiently converted into conducting states when exposed to sintering temperature in the range of 200-240 °C, this temperature is lower than the previously reported values for Ag paste. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ∼0.4 nJ energy and an amplitude fluctuation ∼0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composite nature of mineralized natural materials is achieved through both the microstructural inclusion of an organic component and an overall microstructure that is controlled by templating onto organic macromolecules. A modification of an existing laboratory technique is developed for the codeposition of a CaCO3-gelatin composite with a controllable organic content. First, calibration curves are developed to determine the organic content of a CaCO3-gelatin composite from infrared spectra. Second, a CaCO3-gelatin composite is deposited on either glass coverslips or demineralized eggshell membranes using an automated alternating soaking process. Electron microscopy images and use of the infrared spectra calibration curves show that by altering the amount of gelatin in the ionic growth solutions, the final organic component of the mineral can be regulated over the range of 1-10%, similar to that of natural eggshell. © 2012 Materials Research Societ.