914 resultados para CHAIN-LENGTH DISTRIBUTION
Resumo:
Of the large clinical trials evaluating screening mammography efficacy, none included women ages 75 and older. Recommendations on an upper age limit at which to discontinue screening are based on indirect evidence and are not consistent. Screening mammography is evaluated using observational data from the SEER-Medicare linked database. Measuring the benefit of screening mammography is difficult due to the impact of lead-time bias, length bias and over-detection. The underlying conceptual model divides the disease into two stages: pre-clinical (T0) and symptomatic (T1) breast cancer. Treating the time in these phases as a pair of dependent bivariate observations, (t0,t1), estimates are derived to describe the distribution of this random vector. To quantify the effect of screening mammography, statistical inference is made about the mammography parameters that correspond to the marginal distribution of the symptomatic phase duration (T1). This shows the hazard ratio of death from breast cancer comparing women with screen-detected tumors to those detected at their symptom onset is 0.36 (0.30, 0.42), indicating a benefit among the screen-detected cases. ^
Resumo:
The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.
Resumo:
Although commonly reported in marine and freshwater environments, little is known about the biological sources of long chain alkyl 1,13- and 1,15-diols, and factors controlling their distributions. Here we analyzed the occurrence and distribution of these lipids in a comprehensive set of marine surface sediments and compare their distributions with environmental conditions like sea surface temperature (SST), salinity and nutrient concentrations. Fractional abundances of the C28 1,13-, C30 1,13- and C30 1,15-diols show a strong correlation with SST and based on these results, we propose the Long chain Diol Index (LDI), which expresses the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. The LDI shows a strong linear correlation with SST (LDI = 0.033 × SST + 0.095; R2 = 0.969, n = 162) over a temperature range of -3 to 27 °C. Long chain diol distributions in sediments from the South Atlantic close to the Congo River outflow (West Africa) provided a 43 kyr LDI SST record. This record reflects several known climatic events and shows similarities with an alkenone-derived SST record obtained using the same suite of sediments, both in trend and in terms of absolute SST. This confirms the potential of the LDI as a proxy for palaeo-SST reconstruction.
Resumo:
The Persian Gulf situated in the arid climate region of the northern hemisphere shows special conditions in its hydrochemistry. The high evaporation, the lack of large rivers, and the exclusion of deep water from the Indian Ocean governs the nutrient cycle. At 28 stations in the deeper part of the Persian Gulf (Iran side), in the Strait of Hormuz, and in the Gulf of Oman determinations of dissolved oxygen, dissolved inorganic phosphate, silicate, and pH were carried out. On 4 selected transverse profiles for phosphate, and dissolved oxygen and on 1 length profile for phosphate, silicate, oxygen, and pH the distribution of these components is shown and the in- and outflow is characterized. It is also pointed out that the nutrients on their way into the Persian Gulf are diminished and that temporary replenishment supply from a layer of about 100 m depth in the Indian Ocean follows. On one horizontal map the phosphate distribution in the surface and 30 m layer gives reference to biological activity. One diagram where nitrogen components are plotted against phosphate shows that nitrate is a limiting factor for productivity. O2/PO4-P and PO4-P/S? diagrams enable the different waterbodies and mixed layers to be characterized.
Resumo:
This paper reports the concentrations and within-class distributions of long-chain alkenones and alkyl alkenoates in the surface waters (0-50 m) of the eastern North Atlantic, and correlates their abundance and distribution with those of source organisms and with water temperature and other environmental variables. We collected these samples of >0.8 µm particulate material from the euphotic zone along the JGOFS 20°W longitude transect, from 61°N to 24°N, during seven cruises of the UK-JGOFS Biogeochemical Ocean Flux Study (BOFS) in 1989-1991; the biogeographical range of our 53 samples extends from the cold (<10°C), nutrient-rich and highly productive subarctic waters of the Iceland Basin to the warm (>25°C) oligotrophic subtropical waters off Africa. Surface water concentrations of total alkenone and alkenoates ranged from <50 ng/l in oligotrophic waters below 40°N to 2000-4500 ng/l in high latitude E. huxleyi blooms, and were well correlated with E. huxleyi cell densities, supporting the assumption that E. huxleyi is the predominant source of these compounds in the present day North Atlantic. The within-class distribution of the C37 and C38 alkenones and C36 alkenoates varied strongly as a function of temperature, and was largely unaffected by nutrient concentration, bloom status and other surface water properties. The biosynthetic response of the source organisms to growth temperature differed between the cold (<16°C) waters above 47°N and the warmer waters to the south. In cold (<16°C) waters above 47°N, the relative amounts of alkenoates and C38 alkenones synthesized was a strong function of growth temperature, while the unsaturation ratio of the alkenones (C37 and C38) was uncorrelated with temperature. Conversely, in warm (>16°C) waters below 47°N, the relative proportions of alkenoates and alkenones synthesized remained constant with increasing temperature while the unsaturation ratios of the C37 and C38 methyl alkenones (Uk37 and Uk38Me, respectively) increased linearly. The fitted regressions of Uk37 and Uk38Me versus temperature for waters >16°C were both highly significant (r**2 > 0.96) and had identical slopes (0.057) that were 50% higher than the slope (0.034) of the temperature calibration of Uk37 reported by Prahl and Wakeham (1987; doi:10.1038/330367a0) over the same temperature range. These observations suggest either a physiological adjustment in biochemical response to growth temperature above a 16-17°C threshold and/or variation between different E. huxleyi strains and/or related species inhabiting the cold and warm water regions of the eastern North Atlantic. Using our North Atlantic data set, we have produced multivariate temperature calibrations incorporating all major features of the alkenone and alkenoate data set. Predicted temperatures using multivariate calibrations are largely unbiased, with a standard error of approximately ±1°C over the entire data range. In contrast, simpler calibration models cannot adequately incorporate regional diversity and nonlinear trends with temperature. Our results indicate that calibrations based upon single variables, such as Uk37, can be strongly biased by unknown systematic errors arising from natural variability in the biosynthetic response of the source organisms to growth temperature. Multivariate temperature calibration can be expected to give more precise estimates of Integrated Production Temperatures (IPT) in the sedimentary record over a wider range of paleoenvironmental conditions, when derived using a calibration data set incorporating a similar range of natural variability in biosynthetic response.
Resumo:
The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.Methods: We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.Results: For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Conclusions: Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.