974 resultados para CATALYTIC AMOUNTS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The invasive thistle Carduus nutans has been reported to be allelopathic, yet no allelochemicals have been identified from the species. In a search for allelochemicals from C. nutans and the closely related invasive species C. acanthoides, bioassay-guided fractionation of roots and leaves of each species were conducted. Only dichloromethane extracts of the roots of both species contained a phytotoxin (aplotaxene, (Z,Z,Z)-heptadeca-1,8,11,14-tetraene) with sufficient total activity to potentially act as an allelochemical. Aplotaxene made up 0.44 % of the weight of greenhouse-grown C. acanthoides roots (ca. 20 mM in the plant) and was not found in leaves of either species. It inhibited growth of lettuce 50%(I-50) in soil at a concentration of ca. 0.5 mg g(-1) of dry soil (ca. 6.5 mM in soil moisture). These values gave a total activity in soil value (molar concentration in the plant divided by the molarity required for 50 % growth inhibition in soil = 3.08) similar to those of some established allelochemicals. The aplotaxene I-50 for duckweed (Lemna paucicostata) in nutrient solution was less than 0.333 mM, and the compound caused cellular leakage of cucumber cotyledon discs in darkness and light at similar concentrations. Soil in which C. acanthoides had grown contained aplotaxene at a lower concentration than necessary for biological activity in our short-term soil bioassays, but these levels might have activity over longer periods of time and might be an underestimate of concentrations in undisturbed and/or rhizosphere soil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
In the work presented here, Ce0.97Cu0.03O2 nanoparticles were synthesized by a microwave-assisted hydrothermal method under different synthesis temperatures. The obtained nanoparticles were tested as catalysts in preferential oxidation of CO to obtain CO-free H2 (PROX reaction). The samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), electron paramagnetic resonance spectroscopy (EPR) and temperature-programmed reduction (TPR). X-ray diffraction measurements detected the presence of pure cubic CeO2 for all synthesized samples. TEM images of the Ce0.97Cu0.03O2 nanoparticles revealed that samples synthesized at 80°C are composed mainly of nanospheres with an average size of 20 nm. The formation of some nanorods with an average diameter of 8 nm and 40 nm in length, and the size reduction of the nanoparticles from 20 to approximately 15 nm is observed with increasing synthesis temperature. EPR spectra indicated that copper is found well dispersed in sample synthesized at 160°C, located predominant in surface sites of ceria. For samples synthesized at 80 and 120°C, the species are less dispersed than in the other one, resulting in the formation of Cu2+−Cu2+ dimmers at the surface of ceria. TPR profiles presented two reduction peaks, one below 400°C attributed to the reduction of different copper species and a second peak around 800°C attributed to the reduction of Ce4+→ Ce3+ species located in the volume of the nanoparticles. The peak related to the reduction of copper species shifts to lower temperatures with increasing synthesis temperature, i.e., the sample synthesized at 160°C is more easily reduced than the ones synthesized at 120 and 80°C. The nanoparticles showed active as catalysts for the CO-PROX reaction. The microwave-assisted method revealed efficient for the synthesis of Ce0.97Cu0.03O2 nanoparticles with copper species selective for the CO-PROX reaction, which reaches CO conversions up to 92% for the sample synthesized at 160°C.
Microwave-assisted hydrothermal synthesis of NiO-Ce1-XEuxO2-δ powders for fuel cell catalytic anodes
Resumo:
CeO2-based materials doped with rare earth (TR +3) can be used as alternative to traditional NiO-YSZ anodes in solid oxide fuel cells as they have higher ionic conductivity and lower ohmic losses compared to YSZ. Moreover, they allow fuel cell operation at lower temperatures (500-800°C). In the anode composition, the concentration of NiO acting as catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, promoting internal reform in the cell. In this work, NiO - Ce1-xEuxO2-δ compounds (x = 0.1, 0.2 and 0.3) have been synthesized by microwave-assisted hydrothermal method. The materials were characterized by TG, XRD, TPR and SEM-FEG techniques. The refinement of data obtained by X-ray diffraction showed the presence of ceria doped with europium crystallized in a cubic phase with fluorite structure, in addition to the presence of NiO. The microwave-assisted hydrothermal method showed significant reduction in the average particle size and good mass control of phase compositions compared to other chemical synthesis techniques.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)