952 resultados para CARBON 12 TARGET


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time series of fCO2, SST, and fluorescence data was collected between 1995 and 1997 by a CARIOCA buoy moored at the DyFAMed station (Dynamique des Flux Atmospheriques en Mediterranée) located in the northwestern Mediterranean Sea. On seasonal timescales, the spring phytoplankton bloom decreases the surface water fCO2 to approximately 290 µatm, followed by summer heating and a strong increase in fCO2 to a maximum of approximately 510 µatm. While the DELTA fCO2 shows strong variations on seasonal timescales, the annual average air-sea disequilibrium is only 2 µatm. Temperature-normalized fCO2 shows a continued decrease in dissolved CO2 throughout the summer and fall at a rate of approximately 0.6 µatm/d. The calculated annual air-sea CO2 transfer rate is -0.10 to -0.15 moles CO2 m-2 y-1, with these low values reflecting the relatively weak wind speed regime and small annual air-sea fCO2 disequilibrium. Extrapolating this rate over the whole Mediterranean Sea would lead to a flux of approximately -3 * 10**12 to -4.5 * 10**12 grams C/y, in good agreement with other estimates. An analysis of the effects of sampling frequency on annual air-sea CO2 flux estimates showed that monthly sampling is adequate to resolve the annual CO2 flux to within approximately ±10 - 18% at this site. Annual flux estimates made using temperature-derived fCO2 based on the measured fCO2-SST correlations are in agreement with measurement-based calculations to within ± 7-10% (depending on the gas transfer parameterization used), and suggest that annual CO2 flux estimates may be reasonably well predicted in this region from satellite or model-derived SST and wind speed information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the extreme low ice year of 2007, primary production and the sinking export of particulate and gel-like organic material, using short-term particle interceptor traps deployed at 100 m, were measured in the southeastern Beaufort Sea during summer 2008. The combined influence of early ice retreat and coastal upwelling contributed to exceptionally high primary production (500 ± 312 mg C/m**2/day, n = 7), dominated by large cells (>5 µm, 73% ± 15%, n = 7). However, except for one station located north of Cape Bathurst, the sinking export of particulate organic carbon (POC) was relatively low (range: 38-104 mg C/m**2/day, n = 12) compared to other productive Arctic shelves. Estimates indicate that 80% ± 20% of the primary production was cycled through large copepods or the microbial food web. Exopolymeric substances were abundant in the sinking material but did not appear to accelerate POC sinking export. The use of isotopic signatures (d13C, d15N) and carbon/nitrogen ratios to identify sources of the sinking material was successful only at two stations with a strong marine or terrestrial signature, indicating the limitations of this approach in hydrographically and biologically complex Arctic coastal waters such as in the Beaufort Sea. At these two stations influenced by either coastal upwelling or erosion, the composition and magnitude of particulate sinking fluxes were markedly different from other stations visited during the study. These observations underscore the fundamental role of mesoscale circulation patterns and hydrodynamic singularities on the export of particulate organic material on Arctic shelves.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.