908 resultados para Bradykinin-potentiating Peptides
Resumo:
Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.
Resumo:
Mass spectrometric analysis of the low-molecular weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments predicted to be derived from low- abundance proteins. This raises the question of why such low abundance molecules would be retained at detectable levels in the circulation, instead of being rapidly cleared and excreted. Theoretical models of biomarker production and association with serum carrier proteins have been developed to elucidate the mechanisms governing biomarker half-life in the bloodstream. These models predict that the vast majority of LMW biomarkers exist in association with circulating high molecular mass carrier proteins. Moreover, the total serum/ plasma concentration of the biomarker is largely determined by the clearance rate of the carrier protein, not the free-phase biomarker clearance itself. These predictions have been verified experimentally using molecular mass fractionation of human serum before mass spectrometry sequence analysis. These principles have profound implications for biomarker discovery and measurement.
Resumo:
Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.
Resumo:
Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology.
Resumo:
Large scale exome sequencing studies have revealed regions of the genome, which contribute to the castrate resistant prostate cancer (CRPC) phenotype. [1],[2],[3] Such studies have identified mutations in genes, which may have diagnostic/prognostic potential, or which may be targeted therapeutically. Two of these genes include the androgen receptor (AR) and speckle-type POZ protein (SPOP) genes. However, the findings from these exome sequencing studies can only be translated therapeutically once the functional consequences of these mutations have been determined. Here, we highlight the recent study by An et al. [4] which investigated the functional effects of mutations in the SPOP gene that were identified in the aforementioned exome sequencing studies, particularly in the context of SPOP-mediated degradation of the AR.
Resumo:
Zein was investigated for use as an oral-drug delivery system by loading prednisolone into zein microparticles using coacervation. To investigate the adaptability of this method to other drugs, zein microparticles were loaded with hydrocortisone, which is structurally related to prednisolone; or mesalazine, which is structurally different having a smaller LogP and ionizable functional groups. Investigations into the in vitro digestibility, and the electrophoretic profile of zein, and zein microparticles were conducted to shed further insight on using this protein as a drug delivery system. Hydrocortisone loading into zein microparticles was comparable with that reported for prednisolone, but mesalazine loading was highly variable. Depending on the starting quantities of hydrocortisone and zein, the average amount of microparticles equivalent to 4 mg hydrocortisone, (a clinically used dose), ranged from 60-115 mg, which is realistic and practical for oral dosing. Comparatively, an average of 2.5 g of microparticles was required to deliver 250 mg of mesalazine (a clinically used dose), so alternate encapsulation methods that can produce higher and more precise mesalazine loading are required. In vitro protein digestibility revealed that zein microparticles were more resistant to digestion compared to the zein raw material, and that individual zein peptides are not preferentially coacervated into the microparticles. In combination, these results suggest that there is potential to formulate a delivery system based on zein microparticles made using specific subunits of zein that is more resistant to digestion as starting material, to deliver drugs to the lower gastrointestinal tract.
Resumo:
Objective. Leconotide (CVID, AM336, CNSB004) is an omega conopeptide similar to ziconotide, which blocks voltage sensitive calcium channels. However, unlike ziconotide, which must be administered intrathecally, leconotide can be given intravenously because it is less toxic. This study investigated the antihyperalgesic potency of leconotide given intravenously alone and in combinations with morphine-administered intraperitoneally, in a rat model of bone cancer pain. Design. Syngeneic rat prostate cancer cells AT3B-1 were injected into one tibia of male Wistar rats. The tumor expanded within the bone causing hyperalgesia to heat applied to the ipsilateral hind paw. Measurements were made of the maximum dose (MD) of morphine and leconotide given alone and in combinations that caused no effect in an open-field activity monitor, rotarod, and blood pressure and heart rate measurements. Paw withdrawal thresholds from noxious heat were measured. Dose response curves for morphine (0.312–5.0 mg/kg intraperitoneal) and leconotide (0.002–200 µg/kg intravenous) given alone were plotted and responses compared with those caused by morphine and leconotide in combinations. Results. Leconotide caused minimal antihyperalgesic effects when administered alone. Morphine given alone intraperitoneally caused dose-related antihyperalgesic effects (ED50 = 2.40 ± 1.24 mg/kg), which were increased by coadministration of leconotide 20 µg/kg (morphine ED50 = 0.16 ± 1.30 mg/kg); 0.2 µg/kg (morphine ED50 = 0.39 ± 1.27 mg/kg); and 0.02 µg/kg (morphine ED50 = 1.24 ± 1.30 mg/kg). Conclusions. Leconotide caused a significant increase in reversal by morphine of the bone cancer-induced hyperalgesia without increasing the side effect profile of either drug. Clinical Implication. Translation into clinical practice of the method of analgesia described here will improve the quantity and quality of analgesia in patients with bone metastases. The use of an ordinary parenteral route for administration of the calcium channel blocker (leconotide) at low dose opens up the technique to large numbers of patients who could not have an intrathecal catheter for drug administration. Furthermore, the potentiating synergistic effect with morphine on hyperalgesia without increased side effects will lead to greater analgesia with improved quality of life.