993 resultados para Boundary layer flow
Resumo:
Mathematical and experimental simulations predict that external fertilization is unsuccessful in habitats characterized by high water motion. A key assumption of such predictions is that gametes are released in hydrodynamic regimes that quickly dilute gametes. We used fucoid seaweeds to examine whether marine organisms in intertidal and subtidal habitats might achieve high levels of fertilization by restricting their release of gametes to calm intervals. Fucus vesiculosus L. (Baltic Sea) released high numbers of gametes only when maximal water velocities were below ca. 0.2 m/s immediately prior to natural periods of release, which occur in early evening in association with lunar cues. Natural fertilization success measured at two sites was always close to 100%. Laboratory experiments confirmed that (i) high water motion inhibits gamete release by F. vesiculosus and by the intertidal fucoids Fucus distichus L. (Maine) and Pelvetia fastigiata (J. Ag.) DeToni (California), and (ii) showed that photosynthesis is required for high gamete release. These data suggest that chemical changes in the boundary layer surrounding adults during photosynthesis and/or mechanosensitive channels may modulate gamete release in response to changing hydrodynamic conditions. Therefore, sensitivity to environmental factors can lead to successful external fertilization, even for species living in turbulent habitats.
Resumo:
Chronopotentiometric and swelling experiments have been conducted to characterize the behavior of a Nafion membrane in NaCl and KCl aqueous solutions without and with glucose. A mixture solution with similar composition to the cerebrospinal fluid and blood plasma has also been studied. From the chronotentiograms, current-voltage curves have been obtained, and the values of the limiting current density, diffusion boundary layer thickness, difference between counter-ion transport number in membrane and free solution, and transition times have been determined for the investigated membrane systems. The obtained results indicate that the presence of glucose affects the ion transport through the membrane depending on the electrolyte and glucose concentrations. At low electrolyte concentration, experimental transition times are found to be smaller in presence of glucose, which has been related to an effective membrane area reduction in presence of glucose. The membrane system corresponding to the mixture solution shows a behavior similar to the single high concentration NaCl membrane system, indicating that the observed behavior is mainly associated to the Na^+ ions transport in higher proportion. In this case, the glucose presence does not affect significantly the investigated properties of the membrane, which is interesting for its utilization in a glucose fuel cell.