955 resultados para Boolean Computations
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recently, the superstring was covariantly quantized using the BRST-like operator Q = ∮ λαdα where λα is a pure spinor and dα are the fermionic Green-Schwarz constraints. By performing a field redefinition and a similarity transformation, this BRST-like operator is mapped to the sum of the Ramond-Neveu-Schwarz BRST operator and η0 ghost. This map is then used to relate physical vertex operators and tree amplitudes in the two formalisms. Furthermore, the map implies the existence of a b ghost in the pure spinor formalism which might be useful for loop amplitude computations.
Resumo:
Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute M = 4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes. © SISSA/ISAS 2004.
Resumo:
The mapping of the land use, vegetation and environmental impacts using remote sensing and geoprocessing allows detection, spatial representation and quantifying all alterations due to the human action in the nature, contributing to the monitoring and planning of those activities that cause damages to the environment. The aim of this research is analyze the transformation ocurred with the land use and vegetation in order to detect environmental impacts during the period from 1962 to 1995, considering a test area in the district of Assistência and surroundings, in the Rio Claro (SP) region. In order to archieve such aim the authors used boolean operations available in the Geographical Information System (GIS) - Idrisi. The maps were obtained through the ordinary (conventional) interpretation of aerial photos, later digitized in the software CAD Overlay and georeferenced in AutoCAD Map. It's observed that operations such as crossing digitized maps of one specific area in two differents dates, using GIS, produce overall results that might point out expansion or retraction's trends of the mapped classes, as well as quantify the intensity of the phenomena.
Resumo:
This study discuss the use of the geotechnologies to aid the planners on the terrain aptness definition for highways implantation and on the different trace evaluation to the extention of the Governador Carvalho Pinto highway, between Taubaté-SP and Aparecida do Norte-SP. Fratures on the area were mapping using Landsat ETM+, band Pan. In order to elaborate the phisical aptness chart for highway implantation was used the Analitical Hierarchy Process (AHP) operation, in on geographical information system (GIS). Using GIS were realized a ponderate middle with the soils, rocks, relief, slope, fractures and land use/cover maps. Using this physical aptness chart and joinning it with urban and restrict areas (that was inserted by the Boolean operation), were obtained a viability chart for highway implantation. Based on it were proposed three aleatory traces for the Carvalho Pinto highway. This traces were evaluated with the cross tabulation operation. The integration of the restrict areas, land use and phisical aptness in digital media can offer for the planners the cartography of the viability for the highway implantation. The evaliation of these three traces, based on the viability chart, can subsidyse the decision by the planners.
Resumo:
The super-Poincaré covariant formalism for the superstring is used to compute massless four-point two-loop amplitudes in ten-dimensional superspace. The computations are much simpler than in the RNS formalism and include both external bosons and fermions. © SISSA 2006.
Resumo:
We present general explicit expressions for a shell-model calculation of the vector hypernuclear parameter in nonmesonic weak decay. We use a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (π, η, K, ρ, ω, K*). In contrast to the approximated formula widely used in the literature, we correctly treat the contribution of transitions originated from single-proton states beyond the s-shell. Exact and simple analytical expressions are obtained for the particular cases of Λ 5He and Λ 12C, within the one-pion-exchange model. Numerical computations of the asymmetry parameter, aΛ, are presented. Our results show a qualitative agreement with other theoretical estimates but also a contradiction with recent experimental determinations. Our simple analytical formulas provide a guide in searching the origin of such discrepancies, and they will be useful for helping to solve the hypernuclear weak decay puzzle.
Resumo:
Among other things, the pure spinor formalism has been used to rederive some particular superstring scattering amplitudes in the last few years. I will briefly review how the computations were done and show that the kinematical factors of these amplitudes can be simply written as integrals in a pure spinor superspace. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch-and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method. ©2007 IEEE.
Resumo:
SAFT techniques are based on the sequential activation, in emission and reception, of the array elements and the post-processing of all the received signals to compose the image. Thus, the image generation can be divided into two stages: (1) the excitation and acquisition stage, where the signals received by each element or group of elements are stored; and (2) the beamforming stage, where the signals are combined together to obtain the image pixels. The use of Graphics Processing Units (GPUs), which are programmable devices with a high level of parallelism, can accelerate the computations of the beamforming process, that usually includes different functions such as dynamic focusing, band-pass filtering, spatial filtering or envelope detection. This work shows that using GPU technology can accelerate, in more than one order of magnitude with respect to CPU implementations, the beamforming and post-processing algorithms in SAFT imaging. ©2009 IEEE.
Resumo:
The use of saturated two-level designs is very popular, especially in industrial applications where the cost of experiments is too high. Standard classical approaches are not appropriate to analyze data from saturated designs, since we could only get the estimates of the main factor effects and we would not have degrees of freedom to estimate the variance of the error. In this paper, we propose the use of empirical Bayesian procedures to get inferences for data obtained from saturated designs. The proposed methodology is illustrated assuming a simulated data set. © 2013 Growing Science Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Ciência da Informação - FFC