992 resultados para Bone tissues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and Objectives: The central odontogenic fibroma (COF) is a benign odontogenic tumour derived from the dental mesenchymal tissues. It is a rare tumour and only 70 cases of it have been published. Bearing in mind the rareness of the tumour, 8 new cases of central odontogenic fibroma have been found by analyzing the clinical, radiological and histopathological characteristics of COF. Patients and Method: A retrospective study was carried out on 3011 biopsies in the Service of Oral and Maxillofacial Surgery of the Dental Clinic of Barcelona University between January 1995 and March 2008. 85 odontogenic tumours were diagnosed of which 8 were central odontogenic fibroma. The radiological study was based on orthopantomographs, periapical and occlusal radiographies and computerised tomographics. The variables collected were: sex, age, clinical characteristics of the lesion, treatment received and possible reappearances of the tumour. Results: The central odontogenic fibroma represents 9.4% of all odontogenic tumours. Of the 8 cases, 5 were diagnosed in men and 3 in women. The average age was 19.9 years with an age range of 11 to 38 years. The most common location of the tumour was in the mandible. All cases were associated with unerupted teeth. Of the 8 tumours, 3 provoked rhizolysis of the adjacent teeth and 4 cases caused cortical bone expansion. 50% of the patients complained of pain associated to the lesion. No case of recurrence was recorded up to 2 years after the treatment. Conclusions: Central odontogenic fibromas usually evolve asymptomatically although they can manifest very aggressively provoking dental displacement and rhizolysis. Radiologically, COF manifest as a uni or multilocular radiotransparent image although they can be indistinguishable from other radiotransparent lesions making diagnosis more difficult. COF treatment involves conservative surgery as well as follow-up patient checks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this in vitro experimental study was to perform histological evaluation of the thermal effect produced on soft tissue irradiated with CO2, Er,Cr:YSGG or diode lasers. Study design: Porcine oral mucosa samples were irradiated with Er,Cr:YSGG laser at 1 W with and without water / air spray, at 2 W with and without water / air spray, and at 4 W with water / air spray, with CO2 laser at 1 W, 2 W, 10 W, 20 W continuous mode and 20 W pulsed mode and diode laser at 2W, 5W, and 10W pulsed mode. The thermal effect was evaluated measuring the width of damaged tissue adjacent to the incision, stained positively for hyalinized tissue with Hematoxylin-Eosin and Masson Trichrome stains. Besides, histological changes in the irradiated tissue were described using subjective grading scales. Results: The evaluated lasers developed a wide range of thermal damage with significant differences between groups. The samples with lowest thermal effect were those irradiated with Er,Cr:YSGG laser using water / air spray, followed by CO2 and diode lasers. Conclusions: Emission parameters of each laser system may influence the thermal damage inflicted on the soft tissue, however, the wave length of each laser determines the absorption rate characteristics of every tissue and the thermal effect

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: to describe the clinical and radiological characteristics of patients with Stafne bone cavity. Study design: a retrospective, observational study of 11 cases of Stafne bone cavity. After finding an imagine compatible with Stafne bone cavity in the Orthopantomograph® of 11 patients, a sialography of the mandibular gland was made in 3 cases, computerized tomography (CT) in 6 cases, and in 4 cases surgical intervention to confirm the diagnosis. Results: the average age was 51.5 years, predominantly males. The entity was diagnosed incidentally during a routine radiology in all cases. The sialography revealed glandular tissue within the defect, and the CT demonstrated the conservation of the lingual cortical and the peripheral origin of the lesion. Glandular tissue was found within the lesions of two of the patients who underwent surgery, and in the other two the cavity was empty. No progressive changes were found in any of the 11 cases. Conclusions: Stafne bone cavity was an incidental finding, presenting no evolutionary changes, and as such conservatory therapy based on periodic controls was indicated. Currently, complementary techniques such as CT are sufficient to establish a certain diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin D is the main hormone of bone metabolism. However, the ubiquitary nature of vitamin D receptor (VDR) suggests potential for widespread effects, which has led to new research exploring the effects of vitamin D on a variety of tissues, especially in the skeletal muscle. In vitro studies have shown that the active form of vitamin D, calcitriol, acts in myocytes through genomic effects involving VDR activation in the cell nucleus to drive cellular differentiation and proliferation. A putative transmembrane receptor may be responsible for nongenomic effects leading to rapid influx of calcium within muscle cells. Hypovitaminosis D is consistently associated with decrease in muscle function and performance and increase in disability. On the contrary, vitamin D supplementation has been shown to improve muscle strength and gait in different settings, especially in elderly patients. Despite some controversies in the interpretation of meta-analysis, a reduced risk of falls has been attributed to vitamin D supplementation due to direct effects on muscle cells. Finally, a low vitamin D status is consistently associated with the frail phenotype. This is why many authorities recommend vitamin D supplementation in the frail patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years deficiency of vitamin D was merely identified and assimilated to the presence of bone rickets. It is now clear that suboptimal vitamin D status may be correlated with several disorders and that the expression of 1-α-hydroxylase in tissues other than the kidney is widespread and of clinical relevance. Recently, evidence has been collected to suggest that, beyond the traditional involvement in mineral metabolism, vitamin D may interact with other kidney hormones such as renin and erythropoietin. This interaction would be responsible for some of the systemic and renal effects evoked for the therapy with vitamin D. The administration of analogues of vitamin D has been associated with an improvement of anaemia and reduction in ESA requirements. Moreover, vitamin D deficiency could contribute to an inappropriately activated or unsuppressed RAS, as a mechanism for progression of CKD and/or cardiovascular disease. Experimental data on the anti-RAS and anti-inflammatory effects treatment with active vitamin D analogues suggest a therapeutic option particularly in proteinuric CKD patients. This option should be considered for those subjects that are intolerant to anti-RAS agents or, as add-on therapy, in those already treated with anti-RAS but not reaching the safe threshold level of proteinuria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) was assessed in adult patients with mild, moderate, and severe osteogenesis imperfecta (OI). The trabecular bone score (TBS), bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), and dual X-ray and laser (DXL) at the calcaneus were likewise assessed in patients with OI. Trabecular microstructure and BMD in particular were severely altered in patients with OI. INTRODUCTION: OI is characterized by high fracture risk but not necessarily by low BMD. The main purpose of this study was to assess bone microarchitecture and BMD at different skeletal sites in different types of OI. METHODS: HR-pQCT was performed in 30 patients with OI (mild OI-I, n = 18 (41.8 [34.7, 55.7] years) and moderate to severe OI-III-IV, n = 12 (47.6 [35.3, 58.4] years)) and 30 healthy age-matched controls. TBS, BMD by DXA at the lumbar spine and hip, as well as BMD by DXL at the calcaneus were likewise assessed in patients with OI only. RESULTS: At the radius, significantly lower trabecular parameters including BV/TV (p = 0.01 and p < 0.0001, respectively) and trabecular number (p < 0.0001 and p < 0.0001, respectively) as well as an increased inhomogeneity of the trabecular network (p < 0.0001 and p < 0.0001, respectively) were observed in OI-I and OI-III-IV in comparison to the control group. Similar results for trabecular parameters were found at the tibia. Microstructural parameters were worse in OI-III-IV than in OI-I. No significant differences were found in cortical thickness and cortical porosity between the three subgroups at the radius. The cortical thickness of the tibia was thinner in OI-I (p < 0.001), but not OI-III-IV, when compared to controls. CONCLUSIONS: Trabecular BMD and trabecular bone microstructure in particular are severely altered in patients with clinical OI-I and OI-III-IV. Low TBS and DXL and their significant associations to HR-pQCT parameters of trabecular bone support this conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescence is an important time for acquiring high peak bone mass. Physical activity is known to be beneficial to bone development. The effect of estrogen-progestin contraceptives (EPC) is still controversial. Altogether 142 (52 gymnasts, 46 runners, and 42 controls) adolescent women participated in this study, which is based on two 7-year (n =142), one 6-year (n =140) and one 4-year (n =122) follow-ups. Information on physical activity, menstrual history, sexual maturation, nutrition, living habits and health status was obtained through questionnaires and interviews. The bone mineral density (BMD) and content (BMC) of lumbar spine (LS) and femoral neck (FN) were measured by dual- energy X-ray absoptiometry. Calcaneal sonographic measurements were also made. The physical activity of the athletes participating in this study decreased after 3-year follow-up. High-impact exercise was beneficial to bones. LS and FN BMC was higher in gymnasts than in controls during the follow-up. Reduction in physical activity had negative effects on bone mass. LS and FN BMC increased less in the group having reduced their physical activity more than 50%, compared with those continuing at the previous level (1.69 g, p=0.021; 0.14 g, p=0.015, respectively). The amount of physical activity was the only significant parameter accounting for the calcaneal sonography measurements at 6-year follow-up (11.3%) and reduced activity level was associated with lower sonographic values. Long-term low-dose EPC use seemed to prevent normal bone mass acquisition. There was a significant trend towards a smaller increase in LS and FN BMC among long-term EPC users. In conclusion, this study confirms that high-impact exercise is beneficial to bones and that the benefits are partly maintained even after a clear reduction in training level at least for 4 years. Continued exercise is needed to retain all acquired benefits. The bone mass gained and maintained can possibly be maximized in adolescence by implementing high-impact exercise for youngsters. The peak bone mass of the young women participating in the study may be reached before the age of 20. Use of low-dose EPCs seems to suppress normal bone mass acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2¿s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38¿ or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.