969 resultados para Bone regeneration, Bone defect, Platelet-rich plasma, Collagen, Animal model, Sheep
Resumo:
We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1 beta vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-beta, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.
Resumo:
We assess the effects of chemical processing, ethylene oxide sterilization, and threading on bone surface and mechanical properties of bovine undecalcified bone screws. In addition, we evaluate the possibility of manufacturing bone screws with predefined dimensions. Scanning electronic microscopic images show that chemical processing and ethylene oxide treatment causes collagen fiber amalgamation on the bone surface. Processed screws hold higher ultimate loads under bending and torsion than the in natura bone group, with no change in pull-out strength between groups. Threading significantly reduces deformation and bone strength under torsion. Metrological data demonstrate the possibility of manufacturing bone screws with standardized dimensions.
Resumo:
Growth hormone (GH) influences bone mass maintenance. However, the consequences of lifetime isolated GH deficiency (IGHD) on bone are not well established. We assessed the bone status and the effect of 6 months of GH replacement in GH-naive adults with IGHD due to a homozygous mutation of the GH-releasing hormone (GHRH)-receptor gene (GHRHR). We studied 20 individuals (10 men) with IGHD at baseline, after 6 months of depot GH treatment, and 6 and 12 months after discontinuation of GH. Quantitative ultrasound (QUS) of the heel was performed and serum osteocalcin (OC) and C-terminal cross-linking telopeptide of type I collagen (ICTP) were measured. QUS was also performed at baseline and 12 months later in a group of 20 normal control individuals (CO), who did not receive GH treatment. At baseline, the IGHD group had a lower T-score on QUS than CO (-1.15 +/- 0.9 vs. -0.07 +/- 0.9, P < 0.001). GH treatment improved this parameter, with improvement persisting for 12 months post-treatment (T-score for IGHD = -0.59 +/- 0.9, P < 0.05). GH also caused an increase in serum OC (baseline vs. pGH, P < 0.001) and ICTP (baseline vs. pGH, P < 0.01). The increase in OC was more marked during treatment and its reduction was slower after GH discontinuation than in ICTP. These data suggest that lifetime severe IGHD is associated with significant reduction in QUS parameters, which are partially reversed by short-term depot GH treatment. The treatment induces a biochemical pattern of bone anabolism that persists for at least 6 months after treatment discontinuation.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.
Resumo:
Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children`s growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling. The trials were registered at www.clinicaltrials.gov as #NCT00598481 and #NCT00599781. (Blood. 2009; 114: 3216-3226)
Resumo:
Undernutrition can cause important functional and morphological alterations in the hematopoietic bone marrow (HBM). Degeneration of the HBM in malnourished individuals has been observed in the long bones, but none has been described in the cranial bones. Mandibular condyle fracture can lead to determine nutritional effects due to the high catabolism needed for the bone healing added to the difficulties of mastication. The aim of this study is to describe the histological aspect of HBM in the fractured mandibular condyle and in the temporal bone of malnourished rats. Thirty adult rats suffered unilateral mandibular condyle fracture and were divided into well-nourished (FG) and malnourished (MG) groups. In the MG the animals received a hypoproteic diet during the experiment. Histological sections of the temporomandibular joint were stained to visualize and quantify the HBM in this region at 24h, and 7, 15, 30, and 90 days post-fracture. At 24 hours, FG and MG showed hypocellularity and ischemic degeneration in the mandibular condyle and in the temporal bone. At 7 days, FG exhibited high cellularity in comparison with MG in the condyle; the temporal bone of both groups presented hypocellularity and degeneration. At 30 and 90 days, FG exhibited similar characteristics to those of the control; MG maintained the degeneration level mainly in the temporal bone. Malnutrition prejudices the regeneration of the HBM during a fracture healing in the temporomandibular joint. This fact contributes to a complete modification of the bone structure as well as to an impairment of the healing process.
Resumo:
Purpose: The aim of this study was to quantitatively evaluate and qualitatively describe autogenous bone graft healing with or without an expanded polytetrafluoroethylene (e-PTFE) membrane in ovariectornized rats. Materials and Methods: Eighty Wistar rats, weighing approximately 300 g each, were used. A graft was obtained from the parietal bone and fixed to the sidewall of each animal`s left mandibular ramus. The animals were randomly divided into four experimental groups (n = 20 in each group): group 1, sham operated and autogenous bone graft only- group 2, sham operated and autogenous bone graft covered by e-PTFE membrane; group 3, ovariectornized (OVX) and autogenous bone graft only- group 4, OVX and autogenous bone graft covered by e-PTFE membrane. The animals were sacrificed at five different time points: immediately after grafting or at 7, 21, 45, or 60 days after grafting. Histologic examination and morphometric measurement of the sections were performed, and values were submitted to statistical analyses. Results: Both groups (sham and OVX) experienced loss of the original graft volume when it was not covered by the membrane, whereas use of the membrane resulted in additional bone formation beyond the edges of the graft and under the membrane. Histologic analysis showed integration of the grafts in all animals, although a larger number of marrow spaces was found in OVX groups. Conclusions: Association of bone graft with an e-PTFE membrane resulted in maintenance of its original volume as well as formation of new bone that filled the space under the membrane. Osteopenia did not influence bone graft repair, regardless of whether or not it was associated with e-PTFE membrane, but descriptive histologic analysis showed larger numbers of marrow spaces in the bone graft and receptor bed and formation of new bone in the OVX animals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1074-1082
Resumo:
Aim: The aim of the present study was to assess the influence of the chemical characteristics and roughness of titanium surfaces on the viability, proliferation and differentiation of osteoblast-like cells cultured in a medium supplemented with recombinant human bone morphogenetic protein-7 (rhBMP-7). Material and methods: Osteo-1 cells were grown on titanium disks presenting with the following surfaces: (1) machined, (2) coarse grit-blasted and acid-attacked (SLA) and (3) chemically modified SLA (SLAmod) in the absence or presence of 20 ng/ml rhBMP-7 in culture medium. The viability and number of osteo-1 cells were evaluated after 24 h. Analyses of total protein content (TP) and alkaline phosphatase (AP) activity at 7, 14 and 21 days, collagen content at 7 and 21 days and mineralized matrix formation at 21 days were performed. Results: Cell viability (P=0.5516), cell number (P=0.3485), collagen content (P=0.1165) and mineralized matrix formation (P=0.5319) were not affected by the different surface configurations or by the addition of rhBMP-7 to the medium. Osteo-1 cells cultured on SLA surfaces showed a significant increase in TP at 21 days. The ALPase/TP ratio (P=0.00001) was affected by treatment and time. Conclusion: The results suggest that the addition of rhBMP-7 to the culture medium did not exert any effect on the viability, proliferation or differentiation of osteoblast-like cells grown on the different surfaces tested. All titanium surfaces analyzed allowed the complete expression of the osteoblast phenotype such as matrix mineralization by osteo-1 cells.
Resumo:
This study evaluated the effect of fluoride oil bone fluoride levels and on ectopic bone formation in young and old rats. Eighty male Wistar rats were assigned to four groups (n = 20/g), which differed according to the fluoride concentration in their drinking water (0, 5, 15 and 50 mg/l). When half of the rats were 90 days old, demineralized bone matrix (DBM) was implanted. The other rats received DBM implants when they were 365 day`s old. The animals were killed 28 days after. Fluoride in the femur surface, whole femur and plasma was analyzed with an electrode, The implants were analyzed histomorphometrically. Data were tested for statistically, significant differences by ANOVA, Tukey`s test, t-test and linear regression (p < 0.05). Increases in plasma, femur surface and whole femur fluoride concentrations were observed cis water fluoride levels increased. There was also a trend for increase in plasina and femur fluoride concentrations cis age increased. Significant positive correlations were found between plasma and femur surface, plasina and femur and femur surface and femur fluoride, concentrations. The morphometric analyses indicated all increase in bone formation for younger rats that received 5 mg/l of fluoride in the drinking water. However, this was not statistically, significant. The younger rats that received 50 mg/l of fluoride showed impairment in bone formation. Bone formation was not significantly affected among the older rats. The results suggest that lower doses of fluoride in the drinking water, which slightly increase plasma fluoride levels, may have an anabolic effect oil bone formation in younger rats. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.
Resumo:
The objective of this study was to evaluate the long-term influence of xenogenic grafts on bone crestal height and radiographic density following extraction of teeth. The right and left third lower molars of 22 patients were surgically extracted, and one randomly chosen socket was filled with a xenogenic graft (Gent-Tech). The contralateral molar was left to heal naturally, serving as a paired control. Digital intraoral radiographies were taken at surgery and 2, 6, and 24 months after, to evaluate bone density (BD) and alveolar bone crest to cementoenamel junction distance. The data obtained were subjected to two-way analysis of variance and Tukey`s test (alpha = 0.05). The significant decrease in cementoenamel junction distance observed for both groups was limited to the first 6 months. BD values increased significantly in the first 6 months, with no alterations observed up to 24 months for both groups. BD was higher for the experimental group at all time points (p < 0.05). Socket grafting with the xenogenic materials tested did not changed bone crestal height and bone radiographic density in the long term.
Resumo:
Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
Resumo:
The objective of this study was to evaluate the bone repair along a mandibular body osteotomy after using a 2.0 miniplate system. Nine adult mongrel dogs were subjected to unilateral continuous defect through an osteotomy between the mandibular 3rd and 4th premolars. Two four-hole miniplates were placed in accordance with the Arbeitgeimeinschaft fur Osteosynthesefragen Manual. Miniplates adapted to the alveolar processes were fixed monocortically with 6.0-mm-length titanium alloy self-tapping screws, whereas miniplates placed near the mandible bases were fixed bicortically. At 2, 6 and 12 weeks, three dogs were sacrificed per period, and the osteotomy sites were removed, divided into three thirds (Tension Third, TT; Intermediary Third, IT; Compression Third, CT) and prepared for conventional and polarized light microscopy. At 6 weeks, while the CT repaired faster and showed bone union by woven bone formation, the TT and IT exhibited a ligament-like fibrous connective tissue inserted in, and connecting, newly formed woven bone overlying the parent lamellar bone edges. At 12 weeks, bone repair took place at all thirds. Histometrically, proportions of newly formed bone did not alter at TT, IT and CT, whereas significantly enhanced bone formation was observed for the 12-week group, irrespective of the third. The results demonstrated that although the method used to stabilize the mandibular osteotomy allowed bone repair to occur, differences in the dynamics of bone healing may take place along the osteotomy site, depending on the action of tension and compression forces generated by masticatory muscles.
Resumo:
Prospective studies have shown rapid engraftment using granulocyte-colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSCs) for allogeneic transplantation, though the risks for graft-versus-host disease (GVHD) may be increased. It was hypothesized that the use of G-CSF to prime bone marrow (GBM) would allow rapid engraftment without increased risk for GVHD compared with G-PBSC. Patients were randomized to receive G-BM or G-PBSCs for allogeneic stem cell transplantation. The study was designed (beta < .8) to detect a difference in the incidence of chronic GVHD of 33% ( < .05). The plan was to recruit 100 patients and to conduct an interim analysis when the 6-month follow-up point was reached for the first 50 patients. Fifty-seven consecutive patients were recruited (G-BM, n = 28; G-PBSC, n = 29). Patients in the G-PBSC group received 3-fold more CD34(+) and 9-fold more CD3(+) cells. Median times to neutrophil (G-BM, 16 days; G-PBSC, 14 days; P < .1) and platelet engraftment (G-BM, 14 days; G-PBSC, 12 days; P < .1) were similar. The use of G-PBSC was associated with steroid refractory acute GVHD (G-BM, 0%; G-PBSC, 32%; P < .001), chronic GVHD (G-BM, 22%; G-PBSC, 80%; P < .02), and prolonged requirement for immunosuppressive therapy (G-BM, 173 days; G-PBSC, 680 days; P < .009). Survival was similar for the 2 groups. Compared with G-PBSC the use of G-BM resulted in comparable engraftment, reduced severity of acute GVHD, and less subsequent chronic GVHD. (Blood. 2001;98:3186-3191) (C) 2001 by The American Society of Hematology.
Resumo:
In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum. (Bone 30:386-392; 2002) (C) 2002 by Elsevier Science Inc. All rights reserved.