972 resultados para Biomass ash
Resumo:
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
A systemic biomass management analysis of small-scale farmers in the hill-zone of western Tajikistan
Resumo:
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Resumo:
Invasive and exotic species present a serious threat to the health and sustainability of natural ecosystems. These species often benefit from anthropogenic activities that aid their introduction and dispersal. This dissertation focuses on invasion dynamics of the emerald ash borer, native to Asia, and European earthworms. These species have shown detrimental impacts in invaded forest ecosystems across the Great Lakes region, and continue to spread via human-assisted long distance dispersal and by natural modes of dispersal into interior forests from areas of introduction. Successful forest management requires that the impact and effect of invasive species be considered and incorporated into management plans. Understanding patterns and constraints of introduction, establishment, and spread will aid in this effort. To assist in efforts to locate introduction points of emerald ash borer, a multicriteria risk model was developed to predict the highest risk areas. Important parameters in the model were road proximity, land cover type, and campground proximity. The model correctly predicted 85% of known emerald ash borer invasion sites to be at high risk. The model’s predictions across northern Michigan can be used to focus and guide future monitoring efforts. Similar modeling efforts were applied to the prediction of European earthworm invasion in northern Michigan forests. Field sampling provided a means to improve upon modeling efforts for earthworms to create current and future predictions of earthworm invasion. Those sites with high soil pH and high basal area of earthworm preferred overstory species (such as basswood and maples) had the highest likelihood of European earthworm invasion. Expanding beyond Michigan into the Upper Great Lakes region, earthworm populations were sampled across six National Wildlife Refuges to identify potential correlates and deduce specific drivers and constraints of earthworm invasion. Earthworm communities across all refuges were influenced by patterns of anthropogenic activity both within refuges and in surrounding ecoregions of study. Forest composition, soil pH, soil organic matter, anthropogenic cover, and agriculture proximity also proved to be important drivers of earthworm abundance and community composition. While there are few management options to remove either emerald ash borer or European earthworms from forests after they have become well established, prevention and early detection are important and can be beneficial. An improved understanding the factors controlling the distribution and invasion patterns of exotic species across the landscape will aid efforts to determine their consequences and generate appropriate forest management solutions to sustain ecosystem health in the presence of these invaders.
Resumo:
This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.
Resumo:
A considerable portion of public lands in the United States is at risk of uncharacteristically severe wildfires due to a history of fire suppression. Wildfires already have detrimental impacts on the landscape and on communities in the wildland-urban interface (WUI) due to unnatural and overstocked forests. Strategies to mitigate wildfire risk include mechanical thinning and prescribed burning in areas with high wildfire risk. The material removed is often of little or no economic value. Woody biomass utilization (WBU) could offset the costs of hazardous fuel treatments if removed material could be used for wood products, heat, or electricity production. However, barriers due to transportation costs, removal costs, and physical constraints (such as steep slopes) hinder woody biomass utilization. Various federal and state policies attempt to overcome these barriers. WBU has the potential to aid in wildfire mitigation and meet growing state mandates for renewable energy. This research utilizes interview data from individuals involved with on-the-ground woody biomass removal and utilization to determine how federal and state policies influence woody biomass utilization. Results suggest that there is not one over-arching policy that hinders or promotes woody biomass utilization, but rather woody biomass utilization is hindered by organizational constraints related to time, cost, and quality of land management agencies’ actions. However, the use of stewardship contracting (a hybrid timber sale and service contract) shows promise for increased WBU, especially in states with favorable tax policies and renewable energy mandates. Policy recommendations to promote WBU include renewal of stewardship contracting legislations and a re-evaluation of land cover types suited for WBU. Potential future policies to consider include the indirect role of carbon dioxide emission reduction activities to promote wood energy and future impacts of air quality regulations.
Resumo:
Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.
Resumo:
The exotic emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was first discovered in North America in southeastern Michigan, USA, and Windsor, Ontario, Canada in 2002. Significant ash (Fraxinus spp.) mortality has been caused in areas where this insect has become well established, and new infestations continue to be discovered in several states in the United States and in Canada. This beetle is difficult to detect when it invades new areas or occurs at low density. Girdled trap tree and ground surveys have been important tools for detecting emerald ash borer populations, and more recently, purple baited prism traps have been used in detection efforts. Girdled trap trees were found to be more effective than purple prism traps at detecting emerald ash borer as they acted as sinks for larvae in an area of known low density emerald ash borer infestation. The canopy condition of the trap trees was not predictive of whether they were infested or not, indicating that ground surveys may not be effective for detection in an area of low density emerald ash borer population. When landing rates of low density emerald ash borer populations were monitored on non-girdled ash trees, landing rates were higher on larger, open grown trees with canopies that contain a few dead branches. As a result of these studies, we suggest that the threshold for emerald ash borer detection using baited purple prism traps hung at the canopy base of trees is higher than for girdled trap trees. In addition, detection of developing populations of EAB may be possible by selectively placing sticky trapping surfaces on non-girdled trap trees that are the larger and more open grown trees at a site.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
Bioenergy and biobased products offer new opportunities for strengthening rural economies, enhancing environmental health, and providing a secure energy future. Realizing these benefits will require the development of many different biobased products and biobased production systems. The biomass feedstocks that will enable such development must be sustainable, widely available across many different regions, and compatible with industry requirements. The purpose of this research is to develop an economic model that will help decision makers identify the optimal size of a forest resource based biofuel production facility. The model must be applicable to decision makers anywhere, though the modeled case analysis will focus on a specific region; the Upper Peninsula (U.P.) of Michigan. This work will illustrate that several factors influence the optimal facility size. Further, this effort will reveal that the location of the facility does affect size. The results of the research show that an optimal facility size can be determined for a given location and are based on variables including forest biomass availability, transportation cost rate, and economy of scale factors. These variables acting alone and interacting together can influence the optimal size and the decision of where to locate the biofuel production facility. Further, adjustments to model variables like biomass resource and storage costs have no effect on facility size, but do affect the unit cost of the biofuel produced.
Resumo:
This report is a study of the development and implementation of a biomass fuel briquette and improved stove project in the highlands of Ethiopia. The primary goal of the project was to determine if the introduction of an improved stove would affect the acceptability of fuel briquettes. The secondary goal was to establish briquette and improved stove manufacturing associations in Dinsho and Rira towns. Two problems encountered during the project were cultural differences in material valuation, and difficulty working with local administrative frameworks and multi-organization communication difficulties. Both briquettes and improved stoves received positive feedback from respondents. Survey data indicated that a price of 0.75 Ethiopian birr per briquette would make them a competitive fuel source against fuelwood. Recommendations for feedstock sourcing and supply, capital investment, labor reduction, estimating cost effectiveness, appropriate technology design, development work setbacks, and valuation paradigms for fuel briquette, improved stove, and development work projects.
Resumo:
This dissertation established a standard foam index: the absolute foam index test. This test characterized a wide range of coal fly ash by the absolute volume of air-entraining admixture (AEA) necessary to produce a 15-second metastable foam in a coal fly ash-cement slurry in a specified time. The absolute foam index test was used to characterize fly ash samples having loss on ignition (LOI) values that ranged from 0.17 to 23.3 %wt. The absolute foam index characterized the fly ash samples by absolute volume of AEA, defined as the amount of undiluted AEA solution added to obtain a 15-minute endpoint signified by 15-second metastable foam. Results were compared from several foam index test time trials that used different initial test concentrations to reach termination at selected times. Based on the coefficient of variation (CV), a 15-minute endpoint, with limits of 12 to 18 minutes was chosen. Various initial test concentrations were used to accomplish consistent contact times and concentration gradients for the 15-minute test endpoint for the fly ash samples. A set of four standard concentrations for the absolute foam index test were defined by regression analyses and a procedure simplifying the test process. The set of standard concentrations for the absolute foam index test was determined by analyzing experimental results of 80 tests on coal fly ashes with loss on ignition (LOI) values ranging from 0.39 to 23.3 wt.%. A regression analysis informed selection of four concentrations (2, 6, 10, and 15 vol.% AEA) that are expected to accommodate fly ashes with 0.39 to 23.3 wt.% LOI, depending on the AEA type. Higher concentrations should be used for high-LOI fly ash when necessary. A procedure developed using these standard concentrations is expected to require only 1-3 trials to meet specified endpoint criteria for most fly ashes. The AEA solution concentration that achieved the metastable foam in the foam index test was compared to the AEA equilibrium concentration obtained from the direct adsorption isotherm test with the same fly ash. The results showed that the AEA concentration that satisfied the absolute foam index test was much less than the equilibrium concentration. This indicated that the absolute foam index test was not at or near equilibrium. Rather, it was a dynamic test where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms. Equilibrium isotherm equations obtained from direct isotherm tests were used to calculate the equilibrium concentrations and capacities of fly ash from 0.17 to 10.5% LOI. The results showed that the calculated fly ash capacity was much less than capacities obtained from isotherm tests that were conducted with higher initial concentrations. This indicated that the absolute foam index was not equilibrium. Rather, the test is dynamic where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms for fly ash of 0.17 to 10.5% LOI. Several batches of mortars were mixed for the same fly ash type increasing only the AEA concentration (dosage) in each subsequent batch. Mortar air test results for each batch showed for each increase in AEA concentration, air contents increased until a point where the next increase in AEA concentration resulted in no increase in air content. This was maximum air content that could be achieved by the particular mortar system; the system reached its air capacity at the saturation limit. This concentration of AEA was compared to the critical micelle concentration (CMC) for the AEA and the absolute foam index.