975 resultados para Biology, Neuroscience|Biology, Genetics


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pollinator visitation rates over the life of a flower are determined by pollinator abundance and floral longevity. If flowers are not visited frequently enough, pollen limitation may occur, favoring the evolution of self-compatibility (SC). In plant species with varying SC levels, central populations often are self-incompatible (SI) and peripheral populations are SC. Witheringia solanacea (Solanaceae) is a species that follows this trend with the exception of one population in the Monteverde Cloud Forest Reserve, which is peripheral yet SI. I investigated this population using multiple techniques including floral bagging, pollinator observations, microsatellite analysis, and floral longevity manipulations. My results confirmed the self-incompatibility of the Monteverde population and indicated low but perhaps adequate rates of pollinator visitation per flower per hour. I found reduced genetic diversity at Monteverde and gene flow occurring unidirectionally from San Luis (a central population) to Monteverde. In the greenhouse, there was more of an effect of male than female function on floral longevity, but the largest differences were environmental. Flowers stayed open substantially longer when cool, cloudy weather was simulated and shorter when conditions were hot and sunny. The results indicate that the Monteverde population of W. solanacea is SI because 1) it is unable to maximize its fitness due to gene flow from San Luis and its relatively recent colonization of the area and 2) pollen limitation may not be severe because of supplemental pollinator availability from other Witheringia species in the area and increased floral longevities due to cool and cloudy conditions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A century after the discovery of Chagas disease, it is still one of the most important parasitic diseases affecting humans. The subfamily Triatominae is important in medical health, because these insects are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease. These insects are also of important cytological relevance because they have particular cell characteristics, such as persistence of nucleolar material in spermatogenesis. The germ cells of the animal kingdom have chromatoid bodies (CBs) in their cytoplasm that can originate from nucleolar material that is fragmented in the early stages of spermatogenesis and plays an important role in cellular communication between the spermatids during spermiogenesis. Currently, there are few studies on the function and formation of the CB in nucleologenesis, especially with emphasis on the ultrastructure of the cells involved in spermatogenesis of insects. Considering the importance of knowledge about the triatomine fauna, we conducted a study of the biogeography and reports of these insects and a survey of patients with Chagas disease in the northwestern region of São Paulo State. Data collected from 1995 to 2009 indicated 700 individuals with Chagas disease, demonstrating a range of 0 to 40 years, which shows that the disease may be active in this region. Moreover, of the 1150 patients treated for cardiomyopathy, 44% were chagasic. Regarding the triatomines noted and captured in the period from 2004 to 2009, the species were Triatoma sordida and Rhodnius neglectus, with T. sordida being the most abundant. In addition, some triatomines were infected by T. cruzi in various developmental stages. We also analyzed the nucleolar cycle and fibrillarin nucleolar protein expression in CB of spermatogenic cells of T. infestans and T. sordida, using histological, ultrastructural and immunocytochemical techniques. The results revealed fibrillarin nucleolar protein expression in the nucleus and in some cytoplasmic spots of germ cells during spermatogenesis in triatomines. These data suggest that fibrillarin could be a constituent of CB, which was most likely derived from nucleolar fragmentation. This is the first time that fibrillarin protein expression has been shown in CB during spermatogenesis progression in triatomines. Knowledge about the biology of triatomines was deepened in this study and, in particular, the structural and ultrastructural aspects of spermatogenesis in triatomines. This study showed that the disease may be active in the northwestern region of São Paulo and expanded our knowledge of the biology of triatomines, the main vectors of Chagas disease. © FUNPEC-RP.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Mouse Tumor Biology (MTB) Database serves as a curated, integrated resource for information about tumor genetics and pathology in genetically defined strains of mice (i.e., inbred, transgenic and targeted mutation strains). Sources of information for the database include the published scientific literature and direct data submissions by the scientific community. Researchers access MTB using Web-based query forms and can use the database to answer such questions as ‘What tumors have been reported in transgenic mice created on a C57BL/6J background?’, ‘What tumors in mice are associated with mutations in the Trp53 gene?’ and ‘What pathology images are available for tumors of the mammary gland regardless of genetic background?’. MTB has been available on the Web since 1998 from the Mouse Genome Informatics web site (http://www.informatics.jax.org). We have recently implemented a number of enhancements to MTB including new query options, redesigned query forms and results pages for pathology and genetic data, and the addition of an electronic data submission and annotation tool for pathology data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A comprehensive and highly illustrated text providing a broad and invaluable overview of sensory systems at the molecular, cellular and neurophysiological level of vertebrates, invertebrates and prokaryotes. It retains a strong focus on human systems, and takes an evolutionary and comparative approach to review the mechanosenses, chemosenses, photosenses, and other sensory systems including those for detecting pain, temperature electric and magnetic fields etc. It incorporates exciting and significant new insights provided by molecular biology which demonstrate how similar the molecular architecture and physiology of sensory cells are across species and across sensory modality, often indicationg a common ancestry dating back over half a billion years. Written by a renowned author, with extensive teaching experience in the biology of sensory systems, this book includes: - Over 400 illustrations - Self–assessment questions - Full bibliography preceded by short bibliographical essays - Boxes containing useful supplementary material. It will be invaluable for undergraduates and postgraduates studying biology, zoology, animal physiology, neuroscience, anatomy, molecular biology, physiological psychology and related courses.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

bbd18 is a differentially expressed Borrelia burgdorferi gene that is transcribed at almost undetectable levels in spirochetes grown in vitro but dramatically upregulated during tick infection. The gene also displays low yet detectable expression at various times in tissues of murine hosts. As the gene product bears no homology to known proteins, its biological significance remains enigmatic. To understand the gene function, we created isogenic bbd18-deletion mutants as well as genetically-complemented isolates from an infectious wild-type B. burgdorferi strain. Compared to parental isolates, bbd18 mutants - but not complemented spirochetes - displayed slower in vitro growth. The bbd18 mutants also reflect significantly reduced ability to persist or remain undetectable both in immunocompetent and SCID mice, yet were able to survive in ticks. This suggests BBD18 function is essential in mammalian hosts but redundant in the arthropod vector. Notably, although bbd18 expression and in vitro growth defects are restored in the complemented isolates, their phenotype is similar to the mutants - being unable to persist in mice but able to survive in ticks. Despite low expression in cultured wild-type B. burgdorferi, bbd18 deletion downregulated several genes. Interestingly, expression of some, including ospD and bbi39, could be complemented, while that of others could not be restored via bbd18 re-expression. Correspondingly, bbd18 mutants displayed altered production of several proteins, and similar to RNA levels, some were restored in the bbd18 complement and others not. To understand how bbd18 deletion results in apparently permanent and noncomplementable phenotypic defects, we sought to genetically disturb the DNA topology surrounding the bbd18 locus without deleting the gene. Spirochetes with an antibiotic cassette inserted downstream of the gene, between bbd17 and bbd18, were significantly attenuated in mice, while a similar upstream insertion, between bbd18 and bbd19, did not affect infectivity, suggesting that an unidentified cis element downstream of bbd18 may encode a virulence-associated factor critical for infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many farmers in South and Southeast Asia describe rice tungro disease as a cancer disease because of the severe damage it causes and the difficulty of controlling it (121). As the most important of the 14 rice viral diseases, tungro was first recognized as a leafhopper-transmitted virus disease in 1963 (88). However, tungro, which means “degenerated growth” in a Filipino dialect, has a much longer history. It is almost certain that tungro was responsible for a disease outbreak that occurred in 1859 in Indonesia, which was referred to at the time as mentek (83). In the past, a variety of names has been given to tungro, including accep na pula in the Philippines, penyakit merah in Malaysia, and yelloworange leaf in Thailand (83).