977 resultados para Biology, Genetics|Chemistry, Biochemistry|Health Sciences, Immunology
Resumo:
Pythagoras, Plato and Euclid’s paved the way for Classical Geometry. The idea of shapes that can be mathematically defined by equations led to the creation of great structures of modern and ancient civilizations, and milestones in mathematics and science. However, classical geometry fails to explain the complexity of non-linear shapes replete in nature such as the curvature of a flower or the wings of a Butterfly. Such non-linearity can be explained by fractal geometry which creates shapes that emulate those found in nature with remarkable accuracy. Such phenomenon begs the question of architectural origin for biological existence within the universe. While the concept of a unifying equation of life has yet to be discovered, the Fibonacci sequence may establish an origin for such a development. The observation of the Fibonacci sequence is existent in almost all aspects of life ranging from the leaves of a fern tree, architecture, and even paintings, makes it highly unlikely to be a stochastic phenomenon. Despite its wide-spread occurrence and existence, the Fibonacci series and the Rule of Golden Proportions has not been widely documented in the human body. This paper serves to review the observed documentation of the Fibonacci sequence in the human body.
Resumo:
R.N.P. and P.J.H. are grateful for funding from an NSERC Discovery Grant. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund—Research Excellence and the University of Toronto. Numerical calculations were done using a modified version of the SOPALE (2000) software. The SOPALE modelling code was originally developed by Philippe Fullsack at Dalhousie University with Chris Beaumont and his Geodynamics group.
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
The common brown leafhopper, Orosius orientalis (Matsumura) (Homoptera: Cicadellidae), previously described as Orosius argentatus (Evans), is an important vector of several viruses and phytoplasmas worldwide. In Australia, phytoplasmas vectored by O. orientalis cause a range of economically important diseases, including legume little leaf (Hutton & Grylls, 1956), tomato big bud (Osmelak, 1986), lucerne witches broom (Helson, 1951), potato purple top wilt (Harding & Teakle, 1985), and Australian lucerne yellows (Pilkington et al., 2004). Orosius orientalis also transmits Tobacco yellow dwarf virus (TYDV; genus Mastrevirus, family Geminiviridae) to beans, causing bean summer death disease (Ballantyne, 1968), and to tobacco, causing tobacco yellow dwarf disease (Hill, 1937, 1941). TYDV has only been recorded in Australia to date. Both diseases result in significant production and quality losses (Ballantyne, 1968; Thomas, 1979; Moran & Rodoni, 1999). Although direct damage caused by leafhopper feeding has been observed, it is relatively minor compared to the losses resulting from disease (P Tr E bicki, unpubl.).
Resumo:
Background: Injury is a leading cause of preventable mortality and morbidity in Australia and the world. Despite this there is little research examining the health related quality of life of adults following general trauma. Methods: A prospective cohort design was used to study adults who presented to hospital following injury. Data regarding injury and demographic details was collected through the routine operation of the Queensland Trauma Registry (QTR). In addition, the short form 36 (SF-36) was mailed to patients approximately 3 months following injury. Results: Participants included 339 injured patients who were hospitalised for ≥24 h in March-June 2003. A secondary group of 145 patients completed the SF-36, but did not have QTR data collected due to hospitalisation being <24 h. Both groups of participants reported significantly lower scores on all subscales of the SF-36 when compared to Australian norms. Conclusions: Health related quality of life of injured survivors is markedly reduced 3 months after injury. Ongoing treatment and support is necessary to improve these health outcomes.
Resumo:
This study aims to stimulate thought, debate and action for change on this question of more vigorous philanthropic funding of Australian health and medical research (HMR). It sharpens the argument with some facts and ideas about HMR funding from overseas sources. It also reports informed opinions from those working, giving and innovating in this area. It pinpoints the range of attitudes to HMR giving, both positive and negative. The study includes some aspects of Government funding as part of the equation, viewing Government as major HMR givers, with particular ability to partner, leverage and create incentives. Stimulating new philanthropy takes active outreach. The opportunity to build more dialogue between the HMR industry and the wider community is timely given the ‘licence to practice’ issues and questioned trust that applies currently somewhat both to science and to the charitable sector. This interest in improving HMR philanthropy also coincides with the launch last year by the Federal Government of Nonprofit Australia Limited (NAL), a group currently assessing infrastructure improvements to the charitable sector. History suggests no one will create this change if Research Australia does not. However, interest in change exists in various quarters. For Research Australia to successfully change the culture of Australian HMR giving, the process will drive the outcomes. Obviously stakeholder buy-in and partners will be needed and the ultimate blueprint for greater philanthropic HMR funding here will not be this document. Instead it will be the one that wears the handprint and ‘mindprint’ of the many architects and implementers interested in promoting HMR philanthropy, from philanthropists to nonprofit peaks to government policy arms. As the African proverb says, ‘If you want to go fast, go alone; but if you want to go far, go with others’.
Resumo:
After reading this chapter, you should be able to: • understand the concept of globalisation and appreciate its complexity • identify the significant impacts of globalisation on population health, particularly the incidence of communicable and non-communicable diseases • understand the distribution of the global burden of disease in high-, middle- and low-income countries • critically evaluate the factors contributing to the major causes of death in low-income countries • understand some of the achievements of the global public health community and appreciate the challenges it faces.
Resumo:
The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.