990 resultados para Biological imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid detection and identification of pathogens is important for minimizing transfer and spread of disease. A label-free and multiplex biosensor based on imaging ellipsometry (BIE) had been developed for the detection of phage M13KO7. The surface of silicon wafer is modified with aldehyde, and proteins can be patterned homogeneously and simultaneously on the surface of silicon wafer in an array format by a microfluidic system. Avidin is immobilized on the surface for biotin-anti-M13 immobilization by means of interaction between avidin and biotin, which will serve as ligand against phage M13KO7. Phages M13KO7 are specifically captured by the ligand when phage M13KO7 solution passes over the surface, resulting in a significant increase of mass surface concentration of the anti-M13 binding phage M13KO7 layer, which could be detected by imaging ellipsometry with a sensitivity of 10(9) pfu/ml. Moreover, atomic force microscopy is also used to confirm the fact that phage M13KO7 has been directly captured by ligands on the surface. It indicates that BIE is competent for direct detection of phage M13KO7 and has potential in the field of virus detection. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biosensor based on imaging ellipsometry (BIE) has been developed and validated in 169 patients for detecting five markers of hepatitis B virus (HBV) infection. The methodology has been established to pave the way for clinical diagnosis, including ligand screening, determination of the sensitivity, set-up of cut-off values (CoVs) and comparison with other clinical methods. A matrix assay method was established for ligand screening. The CoVs of HBV markers were derived with the help of receiver operating characteristic curves. Enzyme-linked immunosorbent assay (ELISA) was the reference method. Ligands with high bioactivity were selected and sensitivities of 1 ng/mL and 1 IU/mL for hepatitis B surface antigen (HBsAg) and surface antibody (anti-HBs) were obtained respectively. The CoVs of HBsAg, anti-HBs, hepatitis B e antigen, hepatitis B e antibody and core antibody were as follows: 15%, 18%, 15%, 20% and 15%, respectively, which were the percentages over the values of corresponding ligand controls. BIE can simultaneously detect up to five markers within 1 h with results in acceptable agreement with ELISA, and thus shows a potential for diagnosing hepatitis B with high throughput.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a review of studies on effects of nutrients on biological productivity and efforts made so far at restoration of nutrients in lakes. It is to provide an understanding of the basis scientific process accruing in lakes, therefore of prime importance in maintaining water quality standards for propagation of effective lake management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: During 1961 the government of Ecuador, with the financial assistance of the Special Fund of the United Nations and the technical assistance of FAO experts, initiated an extensive program of fisheries research centered in a fisheries institute established in Guayaquil. In cooperation with this program, and in connection with Ecuador's adherence in 1961 to the Convention for the Establishment of an Inter-American Tropical Tuna Commission, a two-and-a-half year investigation of the ecology of the Gulf of Guayaquil and adjacent waters was started by the Inter-American Tropical Tuna Commission. SPANISH: Durante 1961 el gobierno ecuatoriano con el apoyo financiero del Fondo Especial de las Naciones Unidas y la ayuda técnica de los expertos de la FAO, inició un programa extensivo de investigación pesquera, centralizado en el instituto pesquero establecido en Guayaquil. En cooperación con este programa y en conexión a la afiliaci6n del Ecuador a la Convención, en 1961, para el establecimiento de una Comisión Interamericana del Atún Tropical, Cue iniciada por la Comisión una investigación de dos aftos y medio sobre la ecología del Golfo de Guayaquil y de las aguas adyacentes. (PDF contains 501 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I of the thesis describes the olfactory searching and scanning behaviors of rats in a wind tunnel, and a detailed movement analysis of terrestrial arthropod olfactory scanning behavior. Olfactory scanning behaviors in rats may be a behavioral correlate to hippocampal place cell activity.

Part II focuses on the organization of olfactory perception, what it suggests about a natural order for chemicals in the environment, and what this in tum suggests about the organization of the olfactory system. A model of odor quality space (analogous to the "color wheel") is presented. This model defines relationships between odor qualities perceived by human subjects based on a quantitative similarity measure. Compounds containing Carbon, Nitrogen, or Sulfur elicit odors that are contiguous in this odor representation, which thus allows one to predict the broad class of odor qualities a compound is likely to elicit. Based on these findings, a natural organization for olfactory stimuli is hypothesized: the order provided by the metabolic process. This hypothesis is tested by comparing compounds that are structurally similar, perceptually similar, and metabolically similar in a psychophysical cross-adaptation paradigm. Metabolically similar compounds consistently evoked shifts in odor quality and intensity under cross-adaptation, while compounds that were structurally similar or perceptually similar did not. This suggests that the olfactory system may process metabolically similar compounds using the same neural pathways, and that metabolic similarity may be the fundamental metric about which olfactory processing is organized. In other words, the olfactory system may be organized around a biological basis.

The idea of a biological basis for olfactory perception represents a shift in how olfaction is understood. The biological view has predictive power while the current chemical view does not, and the biological view provides explanations for some of the most basic questions in olfaction, that are unanswered in the chemical view. Existing data do not disprove a biological view, and are consistent with basic hypotheses that arise from this viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light microscopy has been one of the most common tools in biological research, because of its high resolution and non-invasive nature of the light. Due to its high sensitivity and specificity, fluorescence is one of the most important readout modes of light microscopy. This thesis presents two new fluorescence microscopic imaging techniques: fluorescence optofluidic microscopy and fluorescent Talbot microscopy. The designs of the two systems are fundamentally different from conventional microscopy, which makes compact and portable devices possible. The components of the devices are suitable for mass-production, making the microscopic imaging system more affordable for biological research and clinical diagnostics.

Fluorescence optofluidic microscopy (FOFM) is capable of imaging fluorescent samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, a filter-coated CMOS sensor collects the fluorescence emissions. The collected data can then be processed to render a fluorescence microscopic image. The resolution, which is determined by the focused light spot size, is experimentally measured to be 0.65 μm.

Fluorescence Talbot microscopy (FTM) is a fluorescence chip-scale microscopy technique that enables large field-of-view (FOV) and high-resolution imaging. The FTM method utilizes the Talbot effect to project a grid of focused excitation light spots onto the sample. The sample is placed on a filter-coated CMOS sensor chip. The fluorescence emissions associated with each focal spot are collected by the sensor chip and are composed into a sparsely sampled fluorescence image. By raster scanning the Talbot focal spot grid across the sample and collecting a sequence of sparse images, a filled-in high-resolution fluorescence image can be reconstructed. In contrast to a conventional microscope, a collection efficiency, resolution, and FOV are not tied to each other for this technique. The FOV of FTM is directly scalable. Our FTM prototype has demonstrated a resolution of 1.2 μm, and the collection efficiency equivalent to a conventional microscope objective with a 0.70 N.A. The FOV is 3.9 mm × 3.5 mm, which is 100 times larger than that of a 20X/0.40 N.A. conventional microscope objective. Due to its large FOV, high collection efficiency, compactness, and its potential for integration with other on-chip devices, FTM is suitable for diverse applications, such as point-of-care diagnostics, large-scale functional screens, and long-term automated imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA is nature’s blueprint, holding within it the genetic code that defines the structure and function of an organism. A complex network of DNA-binding proteins called transcription factors can largely control the flow of information from DNA, so modulating the function of transcription factors is a promising approach for treating many diseases. Pyrrole-imidazole (Py-Im) polyamides are a class of DNA-binding oligomers, which can be synthetically programmed to bind a target sequence of DNA. Due to their unique shape complementarity and a series of favorable hydrogen bonding interactions that occur upon DNA-binding, Py-Im polyamides can bind to the minor groove of DNA with affinities comparable to transcription factors. Previous studies have demonstrated that these cell-permeable small molecules can enter cell nuclei and disrupt the transcription factor-DNA interface, thereby repressing transcription. As the use of Py-Im polyamides has significant potential as a type of modular therapeutic platform, the need for polyamides with extremely favorable biological properties and high potency will be essential. Described herein, a variety of studies have been performed aimed at improving the biological activity of Py-Im polyamides. To improve the biological potency and cellular uptake of these compounds, we have developed a next-generation class of polyamides bearing aryl-turn moieties, a simple structural modification that allows significant improvements in cellular uptake. This strategy was also applied to a panel of high-affinity cyclic Py-Im polyamides, again demonstrating the remarkable effect minor structural changes can have on biological activity. The solubility properties of Py-Im polyamides and use of formulating reagents with their treatment have also been examined. Finally, we describe the study of Py-Im polyamides as a potential artificial transcription factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy with the combining of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labeling. The CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscopy. In this paper, we calculated the propagation of CARS signals by using the wave equation in medium and the slowly varying envelope approximation (SVEA), and find that the intensity angular distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscopy (e.g.. the point spread function) will fail to descript the imaging properties of CARS microscopy. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waking up from a dreamless sleep, I open my eyes, recognize my wife’s face and am filled with joy. In this thesis, I used functional Magnetic Resonance Imaging (fMRI) to gain insights into the mechanisms involved in this seemingly simple daily occurrence, which poses at least three great challenges to neuroscience: how does conscious experience arise from the activity of the brain? How does the brain process visual input to the point of recognizing individual faces? How does the brain store semantic knowledge about people that we know? To start tackling the first question, I studied the neural correlates of unconscious processing of invisible faces. I was unable to image significant activations related to the processing of completely invisible faces, despite existing reports in the literature. I thus moved on to the next question and studied how recognition of a familiar person was achieved in the brain; I focused on finding invariant representations of person identity – representations that would be activated any time we think of a familiar person, read their name, see their picture, hear them talk, etc. There again, I could not find significant evidence for such representations with fMRI, even in regions where they had previously been found with single unit recordings in human patients (the Jennifer Aniston neurons). Faced with these null outcomes, the scope of my investigations eventually turned back towards the technique that I had been using, fMRI, and the recently praised analytical tools that I had been trusting, Multivariate Pattern Analysis. After a mostly disappointing attempt at replicating a strong single unit finding of a categorical response to animals in the right human amygdala with fMRI, I put fMRI decoding to an ultimate test with a unique dataset acquired in the macaque monkey. There I showed a dissociation between the ability of fMRI to pick up face viewpoint information and its inability to pick up face identity information, which I mostly traced back to the poor clustering of identity selective units. Though fMRI decoding is a powerful new analytical tool, it does not rid fMRI of its inherent limitations as a hemodynamics-based measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparin has been used as an anticoagulant drug for more than 70 years. The global distribution of contaminated heparin in 2007, which resulted in adverse clinical effects and over 100 deaths, emphasizes the necessity for safer alternatives to animal-sourced heparin. The structural complexity and heterogeneity of animal-sourced heparin not only impedes safe access to these biologically active molecules, but also hinders investigations on the significance of structural constituents at a molecular level. Efficient methods for preparing new synthetic heparins with targeted biological activity are necessary not only to ensure clinical safety, but to optimize derivative design to minimize potential side effects. Low molecular weight heparins have become a reliable alternative to heparin, due to their predictable dosages, long half-lives, and reduced side effects. However, heparin oligosaccharide synthesis is a challenging endeavor due to the necessity for complex protecting group manipulation and stereoselective glycosidic linkage chemistry, which often result in lengthy synthetic routes and low yields. Recently, chemoenzymatic syntheses have produced targeted ultralow molecular weight heparins with high-efficiency, but continue to be restricted by the substrate specificities of enzymes.

To address the need for access to homogeneous, complex glycosaminoglycan structures, we have synthesized novel heparan sulfate glycopolymers with well-defined carbohydrate structures and tunable chain length through ring-opening metathesis polymerization chemistry. These polymers recapitulate the key features of anticoagulant heparan sulfate by displaying the sulfation pattern responsible for heparin’s anticoagulant activity. The use of polymerization chemistry greatly simplifies the synthesis of complex glycosaminoglycan structures, providing a facile method to generate homogeneous macromolecules with tunable biological and chemical properties. Through the use of in vitro chromogenic substrate assays and ex vivo clotting assays, we found that the HS glycopolymers exhibited anticoagulant activity in a sulfation pattern and length-dependent manner. Compared to heparin standards, our short polymers did not display any activity. However, our longer polymers were able to incorporate in vitro and ex vivo characteristics of both low-molecular-weight heparin derivatives and heparin, displaying hybrid anticoagulant properties. These studies emphasize the significance of sulfation pattern specificity in specific carbohydrate-protein interactions, and demonstrate the effectiveness of multivalent molecules in recapitulating the activity of natural polysaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.