999 resultados para Biodiversity modeling
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
We argue that population modeling can add value to ecological risk assessment by reducing uncertainty when extrapolating from ecotoxicological observations to relevant ecological effects. We review other methods of extrapolation, ranging from application factors to species sensitivity distributions to suborganismal (biomarker and "-omics'') responses to quantitative structure activity relationships and model ecosystems, drawing attention to the limitations of each. We suggest a simple classification of population models and critically examine each model in an extrapolation context. We conclude that population models have the potential for adding value to ecological risk assessment by incorporating better understanding of the links between individual responses and population size and structure and by incorporating greater levels of ecological complexity. A number of issues, however, need to be addressed before such models are likely to become more widely used. In a science context, these involve challenges in parameterization, questions about appropriate levels of complexity, issues concerning how specific or general the models need to be, and the extent to which interactions through competition and trophic relationships can be easily incorporated.
Resumo:
Phylogenetic relationships in the largely South African genus Muraltia (Polygalaceae) are assessed based on DNA sequence data (nuclear ribosomal ITS, plastid atpB-rbcL spacer, trnL intron, and trnL-F spacer) for 73 of the 117 currently recognized species in the genus. The previously recognised subgenus Muraltia is monophyletic, but the South African endemic genus Nylandtia is embedded in Muraltia subgenus Psiloclada. Subgenus Muraltia is found to be sister to subgenus Psiloclada. Estimates show the beginning of diversification of the two subgenera in the early Miocene (Psiloclada, 19.3+/-3.4 Ma; Muraltia, 21.0+/-3.5 Ma) pre-dating the establishment of the Benguela current (intermittent in the middle to late Oligocene and markedly intensifying in the late Miocene), and summer-dry climate in the Cape region. However, the later increase in species numbers is contemporaneous with these climatic phenomena. Results of dispersal-vicariance analyses indicate that major clades in Muraltia diversified from the southwestern and northwestern Cape, where most of the species are found today.
Resumo:
A perennial issue for land use policy is the evaluation of landscape biodiversity and the associated cost effectiveness of any biodiversity conservation policy actions. Based on the CUA methodology as applied to species conservation, this paper develops a methodology for evaluating the impact on habitats of alternative landscape management scenarios. The method incorporates three dimensions of habitats, quantity change, quality change and relative scarcity, and is illustrated in relation to the alternative landscape management scenarios for the Scottish Highlands (Cairngorms) study area of the BioScene project. The results demonstrate the value of the method for evaluating biodiversity conservation policies through their impact on habitats.
Resumo:
There is a concerted global effort to digitize biodiversity occurrence data from herbarium and museum collections that together offer an unparalleled archive of life on Earth over the past few centuries. The Global Biodiversity Information Facility provides the largest single gateway to these data. Since 2004 it has provided a single point of access to specimen data from databases of biological surveys and collections. Biologists now have rapid access to more than 120 million observations, for use in many biological analyses. We investigate the quality and coverage of data digitally available, from the perspective of a biologist seeking distribution data for spatial analysis on a global scale. We present an example of automatic verification of geographic data using distributions from the International Legume Database and Information Service to test empirically, issues of geographic coverage and accuracy. There are over 1/2 million records covering 31% of all Legume species, and 84% of these records pass geographic validation. These data are not yet a global biodiversity resource for all species, or all countries. A user will encounter many biases and gaps in these data which should be understood before data are used or analyzed. The data are notably deficient in many of the world's biodiversity hotspots. The deficiencies in data coverage can be resolved by an increased application of resources to digitize and publish data throughout these most diverse regions. But in the push to provide ever more data online, we should not forget that consistent data quality is of paramount importance if the data are to be useful in capturing a meaningful picture of life on Earth.
Resumo:
This investigation deals with the question of when a particular population can be considered to be disease-free. The motivation is the case of BSE where specific birth cohorts may present distinct disease-free subpopulations. The specific objective is to develop a statistical approach suitable for documenting freedom of disease, in particular, freedom from BSE in birth cohorts. The approach is based upon a geometric waiting time distribution for the occurrence of positive surveillance results and formalizes the relationship between design prevalence, cumulative sample size and statistical power. The simple geometric waiting time model is further modified to account for the diagnostic sensitivity and specificity associated with the detection of disease. This is exemplified for BSE using two different models for the diagnostic sensitivity. The model is furthermore modified in such a way that a set of different values for the design prevalence in the surveillance streams can be accommodated (prevalence heterogeneity) and a general expression for the power function is developed. For illustration, numerical results for BSE suggest that currently (data status September 2004) a birth cohort of Danish cattle born after March 1999 is free from BSE with probability (power) of 0.8746 or 0.8509, depending on the choice of a model for the diagnostic sensitivity.
Resumo:
In the Biodiversity World (BDW) project we have created a flexible and extensible Web Services-based Grid environment for biodiversity researchers to solve problems in biodiversity and analyse biodiversity patterns. In this environment, heterogeneous and globally distributed biodiversity-related resources such as data sets and analytical tools are made available to be accessed and assembled by users into workflows to perform complex scientific experiments. One such experiment is bioclimatic modelling of the geographical distribution of individual species using climate variables in order to predict past and future climate-related changes in species distribution. Data sources and analytical tools required for such analysis of species distribution are widely dispersed, available on heterogeneous platforms, present data in different formats and lack interoperability. The BDW system brings all these disparate units together so that the user can combine tools with little thought as to their availability, data formats and interoperability. The current Web Servicesbased Grid environment enables execution of the BDW workflow tasks in remote nodes but with a limited scope. The next step in the evolution of the BDW architecture is to enable workflow tasks to utilise computational resources available within and outside the BDW domain. We describe the present BDW architecture and its transition to a new framework which provides a distributed computational environment for mapping and executing workflows in addition to bringing together heterogeneous resources and analytical tools.
Resumo:
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.
Resumo:
In the BiodiversityWorld project we are building a GRID to support scientific biodiversity-related research. The requirements associated with such a GRID are somewhat different from other GRIDs, and this has influenced the architecture that we have developed. In this paper we outline these requirements, most notably the need to interoperate over a diverse set of legacy databases and applications in an environment that supports effective resource discovery and use of these resources in complex workflows. Our architecture provides an invocation model that is usable over a wide range of resource types and underlying GRID middleware. However, there is a trade-off between the flexibility provided by our architecture and its performance. We discuss how this affects the inclusion of computationally intensive applications and applications that are highly interactive; we also consider the broader issue of interoperation with other GRIDs.
Resumo:
The effects of metal contamination on natural populations of Collembola in soils from five sites in the Wolverhampton area ( West Midlands, England) were examined. Analysis revealed that metal concentrations were elevated above background levels at all sites. One location in particular (Ladymoor, a former smelting site) was highly contaminated with Cd, Cu, Pb and Zn at more than 20 times background levels. Biodiversity indices ( Shannon - Weiner, Simpson index, Margalef index, alpha index, species richness, Shaneven ( evenness) and Berger - Parker dominance) were calculated. Of these indices, estimates of species richness and evenness were most effective at highlighting the differences between the Collembola communities. Indeed, the highest number of species were found at the most contaminated site, although the Collembola population also had a comparatively low evenness value, with just two species dominating. The number of individuals per species were allocated into geometric classes and plotted against the cumulative number of species as a percentage. At Ladymoor, there were more geometric classes, and the slope of the line was shallower than at the other four sites. This characteristic is a feature of polluted sites, where a few species are dominant and most species are rare. The Ladymoor soil also had a dominance of Isotomurus palustris, and was the only site in which Ceratophysella denticulata was found. Previous studies have shown that these two species are often found in sites subject to high metal contamination. Survival and reproduction of the "standard'' test springtail, Folsomia candida (Willem), were determined in a 4 week exposure test to soils from all five sites. Mortality was significantly increased in adults and reproduction significantly lower in the Ladymoor soil in comparison to the other four sites. This study has shown that severe metal contamination can be related to the population structure of Collembola in the field, and performance of F. candida ( in soils from such sites) in the laboratory.
Resumo:
Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected.