966 resultados para Biochemical Markers
Resumo:
Background: Indian Asians living in Western Countries have an over 50% increased risk of coronary heart disease (CHD) relative to their Caucasians counterparts. The atherogenic lipoprotein phenotype (ALP), which is more prevalent in this ethnic group, may in part explain the increased risk. A low dietary long chain n-3 fatty acid (LC n-3 PUFA) intake and a high dietary n-6 PUFA intake and n-6:n-3 PUFA ratio in Indian Asians have been proposed as contributors to the increased ALP incidence and CHD risk in this subgroup. Aim: To examine the impact of dietary n-6:n-3 PUFA ratio on membrane fatty acid composition, blood lipid levels and markers of insulin sensitivity in Indian Asians living in the UK. Methods: Twenty-nine males were assigned to either a moderate or high n-6:n-3 PUFA (9 or 16) diet for 6 weeks. Fasting blood samples were collected at baseline and 6 weeks for analysis of triglycerides, total-, LDL- and HDL- cholesterol, non-esterified fatty acids, glucose, insulin, markers of insulin sensitivity and C-reactive protein. Results: Group mean saturated fatty acid, MUFA, n-6 PUFA and n-3 PUFA on the moderate and high n-6:n-3 PUFA diets were 26 g/d, 43 g/d, 15 g/d, 2 g/d and 25 g/d, 25 g/d, 28 g/d, 2 g/d respectively. A significantly lower total membrane n-3 PUFA and a trend towards lower EPA and DHA levels were observed following the high n-6:n-3 PUFA diet. However no significant effect of treatment on plasma lipids was evident. There was a trend towards a loss of insulin sensitivity on the high n-6:n-3 PUFA diet, with the increase in fasting insulin (P = 0.04) and HOMA IR [(insulin x glucose)/22.5] (P = 0.02) reaching significance. Conclusion: The results of the current study suggest that, within the context of a western diet, it is unlikely that dietary n-6:n-3 PUFA ratio has any major impact on the levels of LC n-3 PUFA in membrane phospholipids or have any major clinically relevant impact on insulin sensitivity and its associated dyslipidaemia.
Resumo:
Objective: To examine whether age-related increase in concentrations of circulating inflammatory mediators is due to concurrent increases in cardiovascular risk factors or is independent of these. Methods and results: Cytokines (IL-6, IL-18), chemokines (6Ckine, MCP-1, IP-10), soluble adhesion molecules (sICAM-1, sVCAM-1, sE-selectin) and adipokines (adiponectin) were measured in the plasma of healthy male subjects aged 18-84 years (n = 162). These were related to known cardiovascular risk factors (age, BMI, systolic and diastolic blood pressure, plasma total cholesterol, LDL cholesterol, HDL cholesterol and triacylglycerol concentrations) in order to identify significant associations. Plasma concentrations of sVCAM-1, sE-selectin, IL-6, IL-18, MCP-1, 6Ckine, IP-10 and adiponectin, but not sICAM-1, were significantly positively correlated with age, as well as with several other cardiovascular risk factors. The correlations with other risk factors disappeared when age was controlled for. In contrast, the correlations with age remained significant for sVCAM-1, IL-6, MCP-1, 6Ckine and IP-10 when other cardiovascular risk factors were controlled for. Conclusions: Plasma concentrations of some inflammatory markers (sVCAM-1, IL-6, MCP-L 6Ckine, IP-10) are positively correlated with age, independent of other cardiovascular risk factors. This suggests that age-related inflammation may not be driven by recognised risk factors. (C) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Insulin is a prebiotic food ingredient, which suppresses colon tumour growth and development in rats. In the gut lumen, it is fermented to lactic acid and short chain fatty acids (SCFA). Of these, butyrate has suppressing agent activities, but little is known concerning cellular responses to complex fermentation samples. To investigate the effects of fermentation products of insulin on cellular responses related to colon carcinogenesis. Fermentations were performed in anaerobic batch cultures or in a three-stage fermentation model that simulates conditions in colon-segments (proximal, transverse, distal). Substrate was insulin enriched with oligofructose (Raftilose® Synergy1), fermented with probiotics (Bifidobacterium lactis Bb12, Lactobacillus rhamnosus GG), and/or faecal inocula. HT29 or CaCo-2 cells were incubated with supernatants of the fermented samples (2.5%-25% v/v, 24-72 hours). Cellular parameters of survival, differentiation, tumour progression, and invasive growth were determined. Fermentation supernatants derived from probiotics and Synergy1 were more effective than with glucose. The additional fermentation with faecal slurries produced supernatants with lower toxicity, higher SCFA contents, and distinct cellular functions. The supernatant derived from the gut model vessel representing the distal colon, was most effective for all parameters, probably on account of higher butyrate-concentrations. Biological effects of insulin upon colon cells may be mediated not only by growth stimulation of the lactic acid-producing bacteria and/or production of butyrate, but also by other bacteria and products of the gut lumen. These newly reported properties of the supernatants to inhibit growth and metastases in colon tumour cells are important mechanisms of tumour suppression.
Resumo:
ApoE is secreted by macrophages at the lesion site of the atherosclerotic plaque, where it is thought to play a protective role against atherosclerosis independently of its effects on lipid metabolism. Of the three common isoforms for apoE, apoE4 is associated with higher risk of cardiovascular disease (CVD). In vitro studies have shown that recombinant apoE may act as an antioxidant in an isoform-dependent manner (E2 > E3 > E4). The oxidative status of the macrophages plays a key role in the process of atherosclerosis. In the present study the possible differential actions of apoE3 and apoE4 on several parameters of oxidative status were determined in stably transfected murine macrophages (RAW 2647-apoE3 and apoE4). No differences between genotypes were observed after peroxide challenge in either protection against cytotoxicity or in cell membrane oxidation, and modest differences were observed in the non-enzymatic antioxidants (glutathione and a-tocopherol) in apoE3 v. apoE4 macrophages. Importantly, cells secreting apoE4 showed increased membrane oxidation under basal conditions, and produced more NO and superoxide anion radicals than the apoE3 macrophages after stimulation. The present data suggest that apoE genotype influences the oxidative status of macrophages, and this could partly contribute to the higher CVD risk observed in apoE4 carriers.
Resumo:
Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial complince (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (sem 2.0) % at baseline and 15.5 (sem 1.1) % after isoflavone treatment compared with 12.4 (sem 1.0) % after placebo treatment (P=0.03). NOx increased from 27.7 (sem 2.7) to 31.1 (sem 3.2) mu m after isoflavones treatment compared with 25.4 (sem 1.5) to 20.4 (sem 1.1) mu m after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women.
Resumo:
Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.
Resumo:
Background: Total enteral nutrition (TEN) within 48 h of admission has recently been shown to be safe and efficacious as part of the management of severe acute pancreatitis. Our aim was to ascertain the safety of immediate TEN in these patients and the effect of TEN on systemic inflammation, psychological state, oxidative stress, plasma glutamine levels and endotoxaemia. Methods: Patients admitted with predicted severe acute pancreatitis (APACHE II score 15) were randomised to total enteral (TEN; n = 8) or total parenteral nutrition (TPN; n = 9). Measurements of systemic inflammation (C-reactive protein), fatigue ( visual analogue scale), oxidative stress ( plasma thiobarbituric acid- reactive substances), plasma glutamine and anti-endotoxin IgG and IgM antibody concentrations were made on admission and repeated on days 3 and 7 thereafter. Clinical progress was monitored using APACHE II score. Organ failure and complications were recorded. Results: All patients tolerated the feeding regime well with few nutrition-related complications. Fatigue improved in both groups but more rapidly in the TEN group. Oxidative stress was high on admission and rose by similar amounts in both groups. Plasma glutamine concentrations did not change significantly in either group. In the TPN group, 3 patients developed respiratory failure and 3 developed non-respiratory single organ failure. There were no such complications in the TEN group. Hospital stay was shorter in the TEN group [ 7 (4-14) vs. 10 (7-26) days; p = 0.05] as was time to passing flatus and time to opening bowels [1 (0-2) vs. 2 (1-5) days; p = 0.01]. The cost of TEN was considerably less than of TPN. Conclusion: Immediate institution of nutritional support in the form of TEN is safe in predicted severe acute pancreatitis. It is as safe and as efficacious as TPN and may be beneficial in the clinical course of this disease. Copyright (C) 2003 S. Karger AG, Basel and IAP.
Resumo:
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K-m) clearly indicated that BbgI (6.11 x 10(4) s(-1) M-1), BbgIII (2.36 x 10(4) s(-1) M-1) and especially BbgIV (4.01 x 10(5) s(-1) M-1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1 -> 6) galactobiose (5.59 x 10(4) s(-1) M-1) than lactose (1.48 x 10(3) s(-1) M-1). Activity measurements towards other substrates (e. g. beta-D-(1 -> 6) galactobiose, beta-D-(1 -> 4) galactobiose, beta-D-(1 -> 4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Resumo:
An atoxigenic strain of Penicillium camemberti was superficially inoculated on fermented sausages in an attempt to improve their sensory properties. The growth of this mould on the surface of the sausages resulted in an intense proteolysis and lipolysis, which caused an increase in the concentration of free amino acids, free fatty acids (FFA) and volatile compounds. Many of these were derived from amino acid catabolism and were responsible for the "ripened flavour", i.e. branched aldehydes and the corresponding alcohols, acids and esters. The development of the fungal mycelia on the surface of the sausages also protected lipids from oxidation, resulting in both lower 2-thiobarbituric acid (TBARS) values and lipid oxidation-derived compounds, such as aliphatic aldehydes and alcohols. The sensory analysis of superficially inoculated sausages showed clear improvements in odour and flavour and, as a consequence, in the overall quality of the sausages. Therefore, this strain is proposed as a potential starter culture for dry fermented sausage production. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Subjects with the metabolic syndrome (MetS) have enhanced oxidative stress and inflammation. Dietary fat quality has been proposed to be implicated in these conditions. We investigated the impact of four diets distinct in fat quantity and quality on 8-iso-PGF2α (a major F2-isoprostane and oxidative stress indicator), 15-keto-13,14-dihydro-PGF2α (15-keto-dihydro-PGF2α, a major PGF2α metabolite and marker of cyclooxygenase-mediated inflammation) and C-reactive protein (CRP). In a 12-week parallel multicentre dietary intervention study (LIPGENE), 417 volunteers with the MetS were randomly assigned to one of the four diets: two high-fat diets (38 % energy (%E)) rich in SFA or MUFA and two low-fat high-complex carbohydrate diets (28 %E) with (LFHCC n-3) or without (LFHCC) 1·24 g/d of very long chain n-3 fatty acid supplementation. Urinary levels of 8-iso-PGF2α and 15-keto-dihydro-PGF2α were determined by RIA and adjusted for urinary creatinine levels. Serum concentration of CRP was measured by ELISA. Neither concentrations of 8-iso-PGF2α and 15-keto-dihydro-PGF2α nor those of CRP differed between diet groups at baseline (P>0·07) or at the end of the study (P>0·44). Also, no differences in changes of the markers were observed between the diet groups (8-iso-PGF2α, P = 0·83; 15-keto-dihydro-PGF2α, P = 0·45; and CRP, P = 0·97). In conclusion, a 12-week dietary fat modification did not affect the investigated markers of oxidative stress and inflammation among subjects with the MetS in the LIPGENE study.
Resumo:
Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.
Resumo:
BACKGROUND: The absorption of cocoa flavanols in the small intestine is limited, and the majority of the flavanols reach the large intestine where they may be metabolized by resident microbiota. OBJECTIVE: We assessed the prebiotic potential of cocoa flavanols in a randomized, double-blind, crossover, controlled intervention study. DESIGN: Twenty-two healthy human volunteers were randomly assigned to either a high-cocoa flavanol (HCF) group (494 mg cocoa flavanols/d) or a low-cocoa flavanol (LCF) group (23 mg cocoa flavanols/d) for 4 wk. This was followed by a 4-wk washout period before volunteers crossed to the alternant arm. Fecal samples were recovered before and after each intervention, and bacterial numbers were measured by fluorescence in situ hybridization. A number of other biochemical and physiologic markers were measured. RESULTS: Compared with the consumption of the LCF drink, the daily consumption of the HCF drink for 4 wk significantly increased the bifidobacterial (P < 0.01) and lactobacilli (P < 0.001) populations but significantly decreased clostridia counts (P < 0.001). These microbial changes were paralleled by significant reductions in plasma triacylglycerol (P < 0.05) and C-reactive protein (P < 0.05) concentrations. Furthermore, changes in C-reactive protein concentrations were linked to changes in lactobacilli counts (P < 0.05, R(2) = -0.33 for the model). These in vivo changes were closely paralleled by cocoa flavanol-induced bacterial changes in mixed-batch culture experiments. CONCLUSION: This study shows, for the first time to our knowledge, that consumption of cocoa flavanols can significantly affect the growth of select gut microflora in humans, which suggests the potential prebiotic benefits associated with the dietary inclusion of flavanol-rich foods. This trial was registered at clinicaltrials.gov as NCT01091922.
Resumo:
Delayed peak response of plasma retinyl esters (RE) relative to plasma triacylglycerols (TAG) and apolipoprotein (Apo) B-48 responses following a fat load supplemented with vitamin A raised doubts about the use of vitamin A to label dietary-derived lipids and lipoproteins. The present study compared the use of water-miscible and oil-soluble retinyl palmitate (RP) as markers of dietary-derived lipoproteins in healthy subjects along with the measurements of postprandial plasma TAG and ApoB-48 responses to investigate whether the delayed peak response observed was due to delayed intestinal output of RE from oil-based solutions. Nine healthy female subjects were given a standard test meal containing a dose (112 mg) of RP in either water-miscible or oil-soluble form in random order, on two separate occasions after a 12 h overnight fast. The results showed that the mean plasma RE concentrations reached a peak significantly later than mean plasma TAG and ApoB-48 concentrations when oil-soluble RP was consumed, whereas plasma RE peaked earlier relative to plasma TAG and ApoB-48 responses when water-miscible RP was used. The results suggested a more rapid absorption with a significantly higher and earlier peak response of plasma RE when water-miscible RP was consumed. This was in contrast to the delayed initial appearance and later sustained higher concentrations of plasma RE during the late postprandial period when oil-soluble RP was consumed. The RE response to the water-miscible RP showed better concordance with plasma TAG response than that of oil-soluble RP.