957 resultados para Bio-optical model
Resumo:
We have been developing a computational code to project optical lenses, with low aberration effects. Our main interest is model the human eye, particularly, project special corrective lenses. As the lens shape is the focus of the optimization, we have coupled a ray tracing method with Monte Carlo techniques. The initial results indicated that the algorithm must be improved in terms of resolution and reliability.
Resumo:
Polymer films were grown in rf discharges containing different proportions of C2H2 and SF6. Quantitative optical emission spectrometry (actinometry) was used to follow the trends in the plasma concentrations of the species H and F, and more tentatively, of CH, CF, and CF2, as a function of the feed composition. Infrared spectroscopy revealed the density of CH and CF bonds in the deposited material. As the partial pressure of SF6 in the feed was increased, the degree of fluorination of the polymer also rose. The form of the dependency of the deposition rate on the proportion of SF6 in the feed was in good qualitative agreement with the activated growth model. From transmission ultraviolet visible spectroscopy data the refractive index and the absorption coefficient of the polymers were calculated as a function of the deposition parameters. Since the optical gap depended to some extent upon the degree of fluorination, it could, within limits, be determined by a suitable choice of the proportion of SF6 in the feed. A qualitative explanation of this relationship is given.
Resumo:
The evaluation of free carrier concentration based on Drude's theory can be performed by the use of optical transmittance in the range 800-2000 nm (near infrared) for Sb-doped SnO2 thin films. In this article, we estimate the free carrier concentration for these films, which are deposited via sol-gel dip-coating. At approximately 900 mn, there is a separation among transmittance curves of doped and undoped samples. The plasma resonance phenomena approach leads to free carrier concentration of about 5 x 1020 cm(-3). The increase in the Sb concentration increases the film conductivity; however, the magnitude of measured resistivity is still very high. The only way to combine such a high free carrier concentration with a rather low conductivity is to have a very low mobility. It becomes possible when the crystallite dimensions are taken into account. We obtain grains with 5 nm of average size by estimating the grain size from X-ray diffraction data, and by using line broadening in the diffraction pattern. The low conductivity is due to very intense scattering at the grain boundary, which is created by the presence of a large amount of nanoscopic crystallites. Such a result is in accordance with X-ray photoemission spectroscopy data that pointed to Sb incorporation proportional to the free electron concentration, evaluated according to Drude's model. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The refractive index and the temperature coefficient of the optical path length change of tellurite (80TeO(2):20Li(2)O) and chalcogenide glasses (72.5Ga(2)S(3):27.5La(2)O(3)) were determined as a function of temperature (up to 150 degrees C) and wavelength (in the range between 454 and 632.8 nm). The tellurite glass exhibits the usual refractive index dispersion in the wavelength range analyzed, while anomalous refractive index dispersion was observed for the chalcogenide glass between 454 and 530 nm. The dispersion parameters were determined by means of the single-effective oscillator model. In addition, a strong dependence of the temperature coefficient of the optical path length on the photon energy and temperature was found for the chalcogenide glass. The latter was correlated to the shift of the optical band gap (or electronic edge) with temperature, which was interpreted by the electron-phonon interaction model. (C) 2007 American Institute of Physics.
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.
Resumo:
Aim To evaluate the reactivity of different endodontic materials and sealers with glucose and to asses the reliability of the glucose leakage model in measuring penetration of glucose through these materials.Methodology Ten uniform discs (radius 5 mm, thickness 2 mm) were made of each of the following materials: Portland cement, MTA (grey and white), sealer 26, calcium sulphate, calcium hydroxide [Ca(OH)(2)], AH26,Epiphany, Resilon, gutta-percha and dentine. After storing the discs for 1 week at 37 degrees C and humid conditions, they were immersed in 0.2 mg mL(-1) glucose solution in a test tube. The concentration of glucose was evaluated using an enzymatic reaction after 1 week. Statistical analysis was performed with the ANOVA and Dunnett tests at a significant level of P < 0.05.Results Portland cement, MTA, Ca(OH)(2) and sealer 26 reduced the concentration in the test tube of glucose significantly after 1 week (P < 0.05). Calcium sulphate reduced the concentration of glucose, but the difference in concentrations was not significant (P = 0.054).Conclusions Portland cement, MTA, Ca(OH)(2) and sealer 26 react with a 0.2 mg mL(-1) glucose solution. Therefore, these materials should not be evaluated for sealing ability with the glucose leakage model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we analyze the relation between the interface microroughness and the full width at half maximum (FWHM) of the photoluminescence (PL) spectra for a GaAs/Ga0.7Al0.3As multiple quantum well (QW) system. We show that, in spite of the complex correlation between the microscopic interface-defects parameters and the QW optical properties, the Singh and Bajaj model [Appl. Phys. Lett. 44, 805 (1984)] provides a good quantitative description of the excitonic PL-FWHM. ©1999 The American Physical Society.
Resumo:
We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.
Resumo:
Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.
Resumo:
Fluorescence diagnosis of malignant lesions has been showed as an attractive optical technique due especially to its real-time response and a more objective and quantitative evaluation. Even though the oral cavity allows a direct examination many lesions are diagnosed when it is already in advanced stage, compromising the patient prognosis. In this study, the fluorescence spectroscopy was used to the detection of chemically induced carcinoma at the lateral border of the tongue in a hamster model. Two excitations wavelengths in visible region were applied: 442 and 532 nm. All the spectra results were analyzed comparing with the histopathological diagnosis. The better results were achieved with the 442 nm laser excitation. The spectra from carcinoma showed new emission bands and these were used to determined different ratios for a quantitative analysis. Using the 625-645 nm fluorescence range under 442 nm excitation (A3 coefficient) the percentage of false negative was of 9.1%, however the false positive percentage was of 18.5%. The 532 nm excitation provided a better normal tissue detection compared to 442 nm excitation. The ideal clinical condition is probably the use of multiple wavelengths excitation for a broader tissue fluorescence investigation.
Resumo:
This research evaluated the bone repair process after implantation of homogenous demineralized dentin matrix (HDDM) in surgical defects in the parietal bone of rabbits with alloxan-induced diabetes, using a polytetrafluorethylene (PTFe) barrier for guided bone regeneration. Thirty-six rabbits were used and divided into four groups: control (C, n = 12), diabetic (D, n = 12, left parietal bone), diabetic with PTFe (DPTFe, same 12 rabbits, right parietal bone), and diabetic with PTFe associated to HDDM (D-PTFe+HDDM, n = 12). Bone defects were created in the parietal bone of the rabbits and the experimental treatments were performed, where applicable. The rabbits were sacrificed after 15, 30, 60 and 90 days. The bone defects were examined radiographically and by optical density (ANOVA and Tukey test, p < .05). The radiographic findings showed that the D-PTFe+HDDM group presented greater radiopacity and better trabecular bone arrangement when compared to that of the C, D and D-PTFe groups. The statistical analysis showed significant differences in the optical density of the newly formed bone among the studied groups. It was possible to conclude that HDDM was biocompatible in diabetic rabbits.
Resumo:
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.